Pregled bibliografske jedinice broj: 795768
One-scale variants of H-measures
One-scale variants of H-measures // Days of Analysis in Novi Sad / Pilipović, Stevan ; Teofanov, Nenad ; Kapustin, Vladimir (ur.).
Novi Sad: Department of Mathematics and Informatics, University of Novi Sad, 2014. str. 4-4 (plenarno, nije recenziran, sažetak, znanstveni)
CROSBI ID: 795768 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
One-scale variants of H-measures
Autori
Antonić, Nenad ; Erceg, Marko ; Lazar, Martin
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Days of Analysis in Novi Sad
/ Pilipović, Stevan ; Teofanov, Nenad ; Kapustin, Vladimir - Novi Sad : Department of Mathematics and Informatics, University of Novi Sad, 2014, 4-4
Skup
Days of Analysis in Novi Sad, DANS14
Mjesto i datum
Novi Sad, Srbija, 03.07.2014. - 07.07.2014
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Nije recenziran
Ključne riječi
H-measure ; one-scale variant ; semiclassical measure ; localisation principle
Sažetak
Microlocal defect functionals (H-measures, H-distributions, semiclassical measures etc.) are objects which determine, in some sense, the lack of strong compactness for weakly convergent L^p sequences. In contrast to the semiclassical measures, H-measures are not suitable to treat problems with a characteristic length (e.g. thickness of a plate). Luc Tartar overcame the mentioned restriction by introducing 1-scale H-measures, a generalisation of H-measures with a characteristic length. Moreover, these objects are also an extension of semiclassical measures, being functionals on continuous functions on a compactification of R^d-{; ; ; 0}; ; ; . We improve and generalise Tartar's localisation principle for 1-scale H-measures from which we are able to derive known localisation principles for H-measures and semiclassical measures. The localisation principle for H-measures has already been successfully applied in many fields (compactness by compensation, small amplitude homogenisation, velocity averaging, averaged control etc.), and the new results expected to have an even wider class of possible applications.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-9780 - Metode slabih convergencija i primjene (WeConMApp) (Antonić, Nenad, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Sveučilište u Dubrovniku