Pregled bibliografske jedinice broj: 794210
Korištenje metoda strojnog učenja u antropološkoj problematici
Korištenje metoda strojnog učenja u antropološkoj problematici, 2015., diplomski rad, diplomski, Filozofski fakultet, Zagreb
CROSBI ID: 794210 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Korištenje metoda strojnog učenja u antropološkoj problematici
(Using machine learning methods in the field of anthropology)
Autori
Carić, Tonko
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Filozofski fakultet
Mjesto
Zagreb
Datum
25.09
Godina
2015
Stranica
72
Mentor
Mateljan, Vladimir ; Sindik, Joško
Ključne riječi
strojno učenje; dubinska analiza podataka; stabla odlučivanja; Bayes; antropologija
(machine learning; data mining; decision trees; Bayes; anthropology)
Sažetak
Machine learning is a part of the field of computer science known as artificial intelligence that deals with the construction and analysing of systems that can learn from the data. The application of machine learning techniques in the analysis of large data sets is called data mining. In-depth analysis of data and its use in the detection of knowledge is an indispensable part of modern data analysis in scientific research, applied in many fields of science. Anthropology as interdisciplinary science in their research provides a broad space for the application of data mining, whose advantages and disadvantages, should be considered. The aim of this work was to review a few selected machine learning algorithms and to examine their use on real-world data set. Supervised and unsupervised learning was tested, with in depth analysis of decision tree algorithm (J48 classification techniques) and Naive Bayes classifier, which were used for prediction of diabetes mellitus from the PIMA Indian diabetes dataset made available by National Institute of Diabetes and Digestive and Kidney Diseases. For the processing of data and for descriptive statistics were used languages „R“ and "Python“, while machine learning algorithms were implemented in tool WEKA.
Izvorni jezik
Hrvatski
Znanstvena područja
Informacijske i komunikacijske znanosti, Etnologija i antropologija
POVEZANOST RADA
Ustanove:
Filozofski fakultet, Zagreb,
Institut za antropologiju