Pregled bibliografske jedinice broj: 793401
Bijective Proof of Extensions of the Sury’s Identity
Bijective Proof of Extensions of the Sury’s Identity // Combinatorial and Additive Number Theory
Graz, Austrija, 2016. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 793401 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Bijective Proof of Extensions of the Sury’s Identity
Autori
Martinjak, Ivica
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Combinatorial and Additive Number Theory
/ - , 2016
Skup
Combinatorial and Additive Number Theory 2016
Mjesto i datum
Graz, Austrija, 04.01.2016. - 08.01.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Fibonacci sequence ; Sury identity ; tilings
Sažetak
We present two families of Fibonacci-Lucas identities, with the {; ; \it Sury's identity}; ; $\sum_{; ; k=0}; ; ^n 2^k L_k = 2^{; ; n+1 }; ; F_{; ; n+1}; ; $ being the best known representative of one of the family. While these results can be proved by means of the basic identity relating Fibonacci and Lucas sequences we also provide a combinatorial proof. Our bijective proof is based on the known fact that the product $m^n f_n$, where $f_n=F_{; ; n+1}; ; $, represents the number of {; ; \it colored $n$-board tilings}; ; with {; ; \it squares}; ; in $m$ colors and {; ; \it dominoes}; ; in $m^2$ colors.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Ivica Martinjak
(autor)