Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 793401

Bijective Proof of Extensions of the Sury’s Identity


Martinjak, Ivica
Bijective Proof of Extensions of the Sury’s Identity // Combinatorial and Additive Number Theory
Graz, Austrija, 2016. (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 793401 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Bijective Proof of Extensions of the Sury’s Identity

Autori
Martinjak, Ivica

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Combinatorial and Additive Number Theory / - , 2016

Skup
Combinatorial and Additive Number Theory 2016

Mjesto i datum
Graz, Austrija, 04.01.2016. - 08.01.2016

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Fibonacci sequence ; Sury identity ; tilings

Sažetak
We present two families of Fibonacci-Lucas identities, with the {; ; \it Sury's identity}; ; $\sum_{; ; k=0}; ; ^n 2^k L_k = 2^{; ; n+1 }; ; F_{; ; n+1}; ; $ being the best known representative of one of the family. While these results can be proved by means of the basic identity relating Fibonacci and Lucas sequences we also provide a combinatorial proof. Our bijective proof is based on the known fact that the product $m^n f_n$, where $f_n=F_{; ; n+1}; ; $, represents the number of {; ; \it colored $n$-board tilings}; ; with {; ; \it squares}; ; in $m$ colors and {; ; \it dominoes}; ; in $m^2$ colors.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Ivica Martinjak (autor)


Citiraj ovu publikaciju:

Martinjak, Ivica
Bijective Proof of Extensions of the Sury’s Identity // Combinatorial and Additive Number Theory
Graz, Austrija, 2016. (predavanje, međunarodna recenzija, sažetak, znanstveni)
Martinjak, I. (2016) Bijective Proof of Extensions of the Sury’s Identity. U: Combinatorial and Additive Number Theory.
@article{article, author = {Martinjak, Ivica}, year = {2016}, keywords = {Fibonacci sequence, Sury identity, tilings}, title = {Bijective Proof of Extensions of the Sury’s Identity}, keyword = {Fibonacci sequence, Sury identity, tilings}, publisherplace = {Graz, Austrija} }
@article{article, author = {Martinjak, Ivica}, year = {2016}, keywords = {Fibonacci sequence, Sury identity, tilings}, title = {Bijective Proof of Extensions of the Sury’s Identity}, keyword = {Fibonacci sequence, Sury identity, tilings}, publisherplace = {Graz, Austrija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font