Pregled bibliografske jedinice broj: 792822
Discriminating between Closely Related Languages on Twitter
Discriminating between Closely Related Languages on Twitter // Informatica (Ljubljana), 39 (2015), 1; 1-8 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 792822 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Discriminating between Closely Related Languages on Twitter
Autori
Ljubešić, Nikola ; Kranjčić, Denis
Izvornik
Informatica (Ljubljana) (0350-5596) 39
(2015), 1;
1-8
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
microblogging; language identification; closely related languages
Sažetak
In this paper we tackle the problem of discriminating Twitter users by the language they tweet in, taking into account very similar South-Slavic languages – Bosnian, Croatian, Montenegrin and Serbian. We apply the supervised machine learning approach by annotating a subset of 500 users from an existing Twitter collection by the language the users primarily tweet in. We show that by using a simple bag-of- words model, univariate feature selection, 320 strongest features and a standard classifier, we reach user classification accuracy of ∼98%. Annotating the whole 63, 160 users strong Twitter collection with the best performing classifier and visualizing it on a map via tweet geo-information, we produce a Twitter language map which clearly depicts the robustness of the classifier.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus