Pregled bibliografske jedinice broj: 792287
Handling Sparse Data Sets by Applying Contrast Set Mining in Feature Selection
Handling Sparse Data Sets by Applying Contrast Set Mining in Feature Selection // Journal of software, 11 (2016), 2; 148-161 doi:10.17706/jsw.11.2.148-161 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 792287 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Handling Sparse Data Sets by Applying Contrast Set
Mining in Feature Selection
Autori
Oreški, Dijana ; Konecki, Mario
Izvornik
Journal of software (1796-217X) 11
(2016), 2;
148-161
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Classification ; contrast set mining ; data characteristics ; data sparsity ; feature selection.
Sažetak
A data set is sparse if the number of samples in a data set is not sufficient to model the data accurately. Recent research emphasized interest in applying data mining and feature selection techniques to real world problems, many of which are characterized as sparse data sets. The purpose of this research is to define new techniques for feature selection in order to improve classification accuracy and reduce the time required for feature selection on sparse data sets. The extensive comparison with benchmarking feature selection techniques on 64 sparse data sets was conducted. Results have shown superiority of contrast set mining techniques in more than 80% of the analysis on sparse data sets. This paper provides a study on the new methodologies and detected superiority in handling data sparsity.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- INSPEC