Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 790426

Oscillatory Integrals and Fractal Dimension


Rolin, Jean-Philippe; Vlah, Domagoj; Županović, Vesna
Oscillatory Integrals and Fractal Dimension // Equadiff 2015
Lion-sur-Mer, Francuska, 2015. (poster, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 790426 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Oscillatory Integrals and Fractal Dimension

Autori
Rolin, Jean-Philippe ; Vlah, Domagoj ; Županović, Vesna

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Skup
Equadiff 2015

Mjesto i datum
Lion-sur-Mer, Francuska, 06.07.2015. - 10.07.2015

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
fractal dimension; box dimension; oscillatory integrals; theory of singularities

Sažetak
Theory of singularities has been closely related with the study of oscillatory integrals. More precisely, the study of critical points is closely related to the study of asymptotic of oscillatory integrals. In our work we investigate the fractal properties of a geometrical representation of oscillatory integrals. We are motivated by a geometrical representation of Fresnel integrals by a spiral called the clothoid, and the idea to produce a classification of singularities using fractal dimension. Fresnel integrals are a well known class of oscillatory integrals. We consider oscillatory integral $$ I(\tau)=\int_{; ; \mathbb{; ; R}; ; ^n}; ; e^{; ; i\tau f(x)}; ; \phi(x) dx, $$ for large values of real parameter $\tau$, where $f$ is the analytic phase and $\phi$ is the smooth amplitude with a compact support. We measure the oscillatority by Minkowski dimension of the planar curve parameterized by functions $X$ and $Y$ that are the real and imaginary parts of the integral $I$, respectively. Also, the oscillatory dimension is defined as Minkowski dimension of the graph of function $x(t) = X(1/t)$, near $t=0$, and analogously for $Y$. We provide explicit formulas connecting these Minkowski dimensions and associated Minkowski contents with asymptotics of the integral $I$ and the type of the critical point of the phase $f$. Techniques used include Newton diagrams and the resolution of singularities.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2014-09-2285 - Geometrijska, ergodička i topološka analiza nisko-dimenzionalnih dinamičkih sustava (GETDYN) (Slijepčević, Siniša, HRZZ - 2014-09) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Domagoj Vlah (autor)

Avatar Url Vesna Županović (autor)

Citiraj ovu publikaciju:

Rolin, Jean-Philippe; Vlah, Domagoj; Županović, Vesna
Oscillatory Integrals and Fractal Dimension // Equadiff 2015
Lion-sur-Mer, Francuska, 2015. (poster, međunarodna recenzija, sažetak, znanstveni)
Rolin, J., Vlah, D. & Županović, V. (2015) Oscillatory Integrals and Fractal Dimension. U: Equadiff 2015.
@article{article, author = {Rolin, Jean-Philippe and Vlah, Domagoj and \v{Z}upanovi\'{c}, Vesna}, year = {2015}, keywords = {fractal dimension, box dimension, oscillatory integrals, theory of singularities}, title = {Oscillatory Integrals and Fractal Dimension}, keyword = {fractal dimension, box dimension, oscillatory integrals, theory of singularities}, publisherplace = {Lion-sur-Mer, Francuska} }
@article{article, author = {Rolin, Jean-Philippe and Vlah, Domagoj and \v{Z}upanovi\'{c}, Vesna}, year = {2015}, keywords = {fractal dimension, box dimension, oscillatory integrals, theory of singularities}, title = {Oscillatory Integrals and Fractal Dimension}, keyword = {fractal dimension, box dimension, oscillatory integrals, theory of singularities}, publisherplace = {Lion-sur-Mer, Francuska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font