Pregled bibliografske jedinice broj: 790155
Functional weak convergence of partial maxima processes
Functional weak convergence of partial maxima processes // Extremes, 19 (2016), 1; 7-23 doi:10.1007/s10687-015-0236-y (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 790155 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Functional weak convergence of partial maxima processes
Autori
Krizmanić, Danijel
Izvornik
Extremes (1386-1999) 19
(2016), 1;
7-23
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
extremal index ; functional limit theorem ; regular variation ; Skorohod J1 topology ; strong mixing ; weak convergence
Sažetak
For a strictly stationary sequence of nonnegative regularly varying random variables $(X_{; ; ; ; ; ; n}; ; ; ; ; ; )$ we study functional weak convergence of partial maxima processes $M_{; ; ; ; ; ; n}; ; ; ; ; ; (t) = \bigvee_{; ; ; ; ; ; i=1}; ; ; ; ; ; ^{; ; ; ; ; ; \lfloor nt \rfloor}; ; ; ; ; ; X_{; ; ; ; ; ; i}; ; ; ; ; ; , \, t \in [0, 1]$ in the space $D[0, 1]$ with the Skorohod $J_{; ; ; ; ; ; 1}; ; ; ; ; ; $ topology. Under the strong mixing condition, we give sufficient conditions for such convergence when clustering of large values do not occur. We apply this result to stochastic volatility processes. Further we give conditions under which the regular variation property is a necessary condition for $J_{; ; ; ; ; ; 1}; ; ; ; ; ; $ and $M_{; ; ; ; ; ; 1}; ; ; ; ; ; $ functional convergences in the case of weak dependence. We also prove that strong mixing implies the so- called Condition $\mathcal{; ; ; ; ; ; A}; ; ; ; ; ; (a_{; ; ; ; ; ; n}; ; ; ; ; ; )$ with the time component.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-3526 - Stohastičke metode u analitičkim i primijenjenim problemima (SMAAP) (Vondraček, Zoran, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku
Profili:
Danijel Krizmanić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet