Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 790155

Functional weak convergence of partial maxima processes


Krizmanić, Danijel
Functional weak convergence of partial maxima processes // Extremes, 19 (2016), 1; 7-23 doi:10.1007/s10687-015-0236-y (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 790155 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Functional weak convergence of partial maxima processes

Autori
Krizmanić, Danijel

Izvornik
Extremes (1386-1999) 19 (2016), 1; 7-23

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
extremal index ; functional limit theorem ; regular variation ; Skorohod J1 topology ; strong mixing ; weak convergence

Sažetak
For a strictly stationary sequence of nonnegative regularly varying random variables $(X_{; ; ; ; ; ; n}; ; ; ; ; ; )$ we study functional weak convergence of partial maxima processes $M_{; ; ; ; ; ; n}; ; ; ; ; ; (t) = \bigvee_{; ; ; ; ; ; i=1}; ; ; ; ; ; ^{; ; ; ; ; ; \lfloor nt \rfloor}; ; ; ; ; ; X_{; ; ; ; ; ; i}; ; ; ; ; ; , \, t \in [0, 1]$ in the space $D[0, 1]$ with the Skorohod $J_{; ; ; ; ; ; 1}; ; ; ; ; ; $ topology. Under the strong mixing condition, we give sufficient conditions for such convergence when clustering of large values do not occur. We apply this result to stochastic volatility processes. Further we give conditions under which the regular variation property is a necessary condition for $J_{; ; ; ; ; ; 1}; ; ; ; ; ; $ and $M_{; ; ; ; ; ; 1}; ; ; ; ; ; $ functional convergences in the case of weak dependence. We also prove that strong mixing implies the so- called Condition $\mathcal{; ; ; ; ; ; A}; ; ; ; ; ; (a_{; ; ; ; ; ; n}; ; ; ; ; ; )$ with the time component.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-3526 - Stohastičke metode u analitičkim i primijenjenim problemima (SMAAP) (Vondraček, Zoran, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku

Profili:

Avatar Url Danijel Krizmanić (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com link.springer.com

Citiraj ovu publikaciju:

Krizmanić, Danijel
Functional weak convergence of partial maxima processes // Extremes, 19 (2016), 1; 7-23 doi:10.1007/s10687-015-0236-y (međunarodna recenzija, članak, znanstveni)
Krizmanić, D. (2016) Functional weak convergence of partial maxima processes. Extremes, 19 (1), 7-23 doi:10.1007/s10687-015-0236-y.
@article{article, author = {Krizmani\'{c}, Danijel}, year = {2016}, pages = {7-23}, DOI = {10.1007/s10687-015-0236-y}, keywords = {extremal index, functional limit theorem, regular variation, Skorohod J1 topology, strong mixing, weak convergence}, journal = {Extremes}, doi = {10.1007/s10687-015-0236-y}, volume = {19}, number = {1}, issn = {1386-1999}, title = {Functional weak convergence of partial maxima processes}, keyword = {extremal index, functional limit theorem, regular variation, Skorohod J1 topology, strong mixing, weak convergence} }
@article{article, author = {Krizmani\'{c}, Danijel}, year = {2016}, pages = {7-23}, DOI = {10.1007/s10687-015-0236-y}, keywords = {extremal index, functional limit theorem, regular variation, Skorohod J1 topology, strong mixing, weak convergence}, journal = {Extremes}, doi = {10.1007/s10687-015-0236-y}, volume = {19}, number = {1}, issn = {1386-1999}, title = {Functional weak convergence of partial maxima processes}, keyword = {extremal index, functional limit theorem, regular variation, Skorohod J1 topology, strong mixing, weak convergence} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font