Pregled bibliografske jedinice broj: 788093
On a variation of a congruence of Subbarao for n = 2^a*5^b, a, b>=0
On a variation of a congruence of Subbarao for n = 2^a*5^b, a, b>=0 // Diophantine Approximation and Related Topics
Århus, Danska, 2015. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 788093 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On a variation of a congruence of Subbarao for n = 2^a*5^b, a, b>=0
Autori
Bujačić, Sanda
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
Diophantine Approximation and Related Topics
Mjesto i datum
Århus, Danska, 13.07.2015. - 17.07.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Euler's totient function; sum of positive divisors; Pellian equations; congruence of Subbarao
Sažetak
There are many open problems concerning the characterization of the positive integers n fulfilling certain congruences and involving the Euler totient function Phi and the sum of positive divisors function Sigma of the positive integer n. In this work, we deal with the congruence of the form n*Phi(n)==2 (mod Sigma(n)) and we prove that the only positive integers of the form 2^a*5^b, a, b>=0, that satisfy the above congruence are n=1, 2, 5, 8.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku
Profili:
Sanda Bujačić Babić
(autor)