Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 787291

Artificial neural networks as an indicator search engine: The visualization of natural and man-caused taxa variability


Milošević, Djuradj; Čerba, Dubravka; Szekeres, József; Csányi, Bela; Tubić, Bojana; Simić, Vladica; Paunović, Momir
Artificial neural networks as an indicator search engine: The visualization of natural and man-caused taxa variability // Ecological indicators, 61 (2016), 2; 777-789 doi:10.1016/j.ecolind.2015.10.029 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 787291 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Artificial neural networks as an indicator search engine: The visualization of natural and man-caused taxa variability

Autori
Milošević, Djuradj ; Čerba, Dubravka ; Szekeres, József ; Csányi, Bela ; Tubić, Bojana ; Simić, Vladica ; Paunović, Momir

Izvornik
Ecological indicators (1470-160X) 61 (2016), 2; 777-789

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Chironomidae larvae ; Bioassessment ; Geo-SOM method ; Large river

Sažetak
One of the main challenges in selecting suitable biological indicators of environmental degradation is to recognize the stressor- specific response signal and to separate it from the natural background variability, which can be accomplished by setting an appropriate statistical design, with an output that enables understanding of the recorded indicator signal. In this study we used artificial neural networks (self organizing map (SOM) and geo- self-organizing map (Geo-SOM)) to model and visualize the variability in the chironomid community of the Danube basin, as a model for large non-wadeable rivers. Geo-SOM analysis visualized the longitudinal distribution of significant parameters defining different spatial-distributional types of anthropogenic disturbance. Chironomidae larvae, sampled in both shallow (river bank) and deep (middle) parts of the river, emphasized hydromorphological degradation and zinc as the most important stressing factors, with chlorophyll-a and suspended solids as accompanying variables influencing the community structure. Substrate specificity was shown to be a relevant factor influencing the variability within chironomid community structure bound to natural causes. Geo-SOM analysis also visualized the longitudinal distribution of chironomid taxa, following the distribution patterns of significant disturbance factors. The Kruskal–Wallis test validated 25 potential indicators for the shore area and 11 for the deep water area, which significantly changed their frequencies and abundances between classes with different extents of degradation. Due to its high taxonomical and ecological diversity, the Chironomidae family is a significant source of potential stress-specific indicators, which should be recognized and included in the future in relevant bioassessment methods. The artificial neural network could be a powerful tool for selecting reliable indicators to explain the variability found in the ecosystem and enable it to be specified and patterned together with environmental degradation.

Izvorni jezik
Engleski

Znanstvena područja
Biologija



POVEZANOST RADA


Ustanove:
Sveučilište u Osijeku - Odjel za biologiju

Profili:

Avatar Url Dubravka Čerba (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com dx.doi.org

Citiraj ovu publikaciju:

Milošević, Djuradj; Čerba, Dubravka; Szekeres, József; Csányi, Bela; Tubić, Bojana; Simić, Vladica; Paunović, Momir
Artificial neural networks as an indicator search engine: The visualization of natural and man-caused taxa variability // Ecological indicators, 61 (2016), 2; 777-789 doi:10.1016/j.ecolind.2015.10.029 (međunarodna recenzija, članak, znanstveni)
Milošević, D., Čerba, D., Szekeres, J., Csányi, B., Tubić, B., Simić, V. & Paunović, M. (2016) Artificial neural networks as an indicator search engine: The visualization of natural and man-caused taxa variability. Ecological indicators, 61 (2), 777-789 doi:10.1016/j.ecolind.2015.10.029.
@article{article, author = {Milo\v{s}evi\'{c}, Djuradj and \v{C}erba, Dubravka and Szekeres, J\'{o}zsef and Cs\'{a}nyi, Bela and Tubi\'{c}, Bojana and Simi\'{c}, Vladica and Paunovi\'{c}, Momir}, year = {2016}, pages = {777-789}, DOI = {10.1016/j.ecolind.2015.10.029}, keywords = {Chironomidae larvae, Bioassessment, Geo-SOM method, Large river}, journal = {Ecological indicators}, doi = {10.1016/j.ecolind.2015.10.029}, volume = {61}, number = {2}, issn = {1470-160X}, title = {Artificial neural networks as an indicator search engine: The visualization of natural and man-caused taxa variability}, keyword = {Chironomidae larvae, Bioassessment, Geo-SOM method, Large river} }
@article{article, author = {Milo\v{s}evi\'{c}, Djuradj and \v{C}erba, Dubravka and Szekeres, J\'{o}zsef and Cs\'{a}nyi, Bela and Tubi\'{c}, Bojana and Simi\'{c}, Vladica and Paunovi\'{c}, Momir}, year = {2016}, pages = {777-789}, DOI = {10.1016/j.ecolind.2015.10.029}, keywords = {Chironomidae larvae, Bioassessment, Geo-SOM method, Large river}, journal = {Ecological indicators}, doi = {10.1016/j.ecolind.2015.10.029}, volume = {61}, number = {2}, issn = {1470-160X}, title = {Artificial neural networks as an indicator search engine: The visualization of natural and man-caused taxa variability}, keyword = {Chironomidae larvae, Bioassessment, Geo-SOM method, Large river} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font