Pregled bibliografske jedinice broj: 785748
An FPTAS for the fractional group Steiner tree problem
An FPTAS for the fractional group Steiner tree problem // Croatian operational research review, 6 (2015), 2; 525-539 doi:10.17535/crorr.2015.0039 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 785748 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
An FPTAS for the fractional group Steiner tree problem
Autori
Jelić, Slobodan
Izvornik
Croatian operational research review (1848-0225) 6
(2015), 2;
525-539
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
approximation algorithm; fully polynomial time approximation scheme; Lagrangean relaxation; group Steiner tree problem; fractional group Steiner tree problem; covering linear program; packing linear program
Sažetak
This paper considers a linear relaxation of the cut-based integer programming formulation for the group Steiner tree problem (FGST). We combine the approach of Koufogiannakis and Young (2013) with the nearly-linear time approximation scheme for the minimum cut problem of Christiano et. al (2011) in order to develop a fully polynomial time approximation scheme for FGST problem. Our algorithm returns the solution to FGST where the objective function value is a maximum of $1+6\varepsilon$ times the optimal, for $\varepsilon\in\langle0, 1/6]$, in $\tilde{;O(mk(m+n^{;4/3};\varepsilon^{;-16/3};)/\var epsilon^2)$ time, where $n$, $m$ and $k$ are numbers of vertices, edges and groups in the group Steiner tree instance, respectively. This algorithm has a better worst-case running time than algorithm by Garg and Khandekar (2002) where the number of groups is sufficiently large.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Profili:
Slobodan Jelić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- EconLit