Pregled bibliografske jedinice broj: 785250
Razvoj softverskih senzora za napredno vođenje procesa prerade nafte
Razvoj softverskih senzora za napredno vođenje procesa prerade nafte, 2015., doktorska disertacija, Fakultet kemijskog inženjerstva i tehnologije, Zagreb
CROSBI ID: 785250 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Razvoj softverskih senzora za napredno vođenje procesa prerade nafte
(Development of soft sensors for refinery advanced process control)
Autori
Mohler, Ivan
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija
Fakultet
Fakultet kemijskog inženjerstva i tehnologije
Mjesto
Zagreb
Datum
20.03
Godina
2015
Stranica
191
Mentor
Bolf, Nenad
Ključne riječi
aromatics complex; differential evolution; simulated annealing; soft sensor; system identification
Sažetak
Industrial facilities show an increasing need for continuous measurements, monitoring and controlling a large number of process variables, strict process and products standards and advanced process control. On-line analyzers are the vital measuring devices in today’s industry. They are frequently unavailable or malfunction. Laboratory assays are irregular and therefore not suitable for process control. Inevitable alternative for unavailable on-line analysis, irregular laboratory assays and more effective process control are soft sensors and inferential control. Based on the plant history data detailed data analysis and preconditioning is carried out. Soft sensor models are developed and the model structures are optimized using global optimization methods. Linear and nonlinear models are identified using finite impulse response (FIR), auto-regressive models with exogenous inputs (ARX), output error (OE) models, nonlinear FIR, nonlinear ARX and Hammerstein-Wiener (HW) models. Global differential evolution (DE) and simulated annealing (SA) methods are used for the model regressor number optimization. Developed models are evaluated based on the model validation criteria, residual analysis and correlation test. The models are tested in refinery production for toluene content estimation with the purpose to design aromatics complex advanced control. Overall results indicate that the application of DE and SA as global optimization methods is suitable for the regressor number estimation of polynomial dynamical models with multiple inputs, especially in a case of very large optimization pool. This makes the development of soft sensors easier and more systematic. By applying proposed research in the plant effective monitoring, diagnostics and advanced process control are expected.
Izvorni jezik
Engleski
Znanstvena područja
Kemijsko inženjerstvo
POVEZANOST RADA
Projekti:
125-1251963-1964 - Softverski senzori i analizatori za motrenje i vođenje procesa (Bolf, Nenad, MZOS ) ( CroRIS)
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb