Pregled bibliografske jedinice broj: 784708
Solving Cost Minimization Problem with Cobb- Douglas Technology via Geometric Programming
Solving Cost Minimization Problem with Cobb- Douglas Technology via Geometric Programming // Proceedings of the 3rd International Symposium on Economics and Social Science
Tokyo: International Business Academics Consortium (iBAC), Taipei, Taiwan, 2015. str. 148-155 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 784708 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Solving Cost Minimization Problem with Cobb- Douglas Technology via Geometric Programming
Autori
Lukač, Zrinka ; Kojić, Vedran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 3rd International Symposium on Economics and Social Science
/ - Tokyo : International Business Academics Consortium (iBAC), Taipei, Taiwan, 2015, 148-155
Skup
The third International Symposium on Economics and Social Science
Mjesto i datum
Tokyo, Japan, 22.07.2015. - 24.07.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Cost minimization ; Cobb-Douglas technology ; Geometric programming ; Sensitivity analysis
Sažetak
Cost minimization problem is a standard and very important problem in economics. In economic literature, there are two common ways to solve the cost minimization problem: substitution method and Lagrange multiplier method. Both methods use differential calculus, which may lead to some complicated steps that are not easy to solve. In this paper, we treat the cost minimization problem as a geometric programming problem. In this way, we solve the cost minimization problem without the use of calculus. The geometric programming approach is very straightforward and easy and differential calculus is not required, so this approach is understadable for many of those who are not necessary familiar with tools of mathematical analysis. Furthermore, geometric programming enables very simple sensitivity analysis for the changes in parameters, which we present in this paper.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Ekonomija
POVEZANOST RADA
Ustanove:
Ekonomski fakultet, Zagreb