Pregled bibliografske jedinice broj: 784232
Identifying Prominent Arguments in Online Debates using Semantic Textual Similarity
Identifying Prominent Arguments in Online Debates using Semantic Textual Similarity // Proceedings of the 2nd Workshop on Argumentation Mining (ArgMining 2015)
Denver (CO): Association for Computational Linguistics (ACL), 2015. str. 110-115 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 784232 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Identifying Prominent Arguments in Online Debates using Semantic Textual Similarity
Autori
Boltužić, Filip ; Šnajder, Jan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2nd Workshop on Argumentation Mining (ArgMining 2015)
/ - Denver (CO) : Association for Computational Linguistics (ACL), 2015, 110-115
Skup
2nd Workshop on Argumentation Mining (ArgMining 2015)
Mjesto i datum
Denver (CO), Sjedinjene Američke Države, 04.07.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Argumentation mining ; online debates ; semantic textual similarity ; hierarchical clustering
Sažetak
Online debates sparkle argumentative discussions from which generally accepted arguments often emerge. We consider the task of unsupervised identification of prominent argument in online debates. As a first step, in this paper we perform a cluster analysis using semantic textual similarity to detect similar arguments. We perform a preliminary cluster evaluation and error analysis based on cluster-class matching against a manually labeled dataset.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Jan Šnajder
(autor)