Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 784232

Identifying Prominent Arguments in Online Debates using Semantic Textual Similarity


Boltužić, Filip; Šnajder, Jan
Identifying Prominent Arguments in Online Debates using Semantic Textual Similarity // Proceedings of the 2nd Workshop on Argumentation Mining (ArgMining 2015)
Denver (CO): Association for Computational Linguistics (ACL), 2015. str. 110-115 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 784232 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Identifying Prominent Arguments in Online Debates using Semantic Textual Similarity

Autori
Boltužić, Filip ; Šnajder, Jan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 2nd Workshop on Argumentation Mining (ArgMining 2015) / - Denver (CO) : Association for Computational Linguistics (ACL), 2015, 110-115

Skup
2nd Workshop on Argumentation Mining (ArgMining 2015)

Mjesto i datum
Denver (CO), Sjedinjene Američke Države, 04.07.2015

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Argumentation mining ; online debates ; semantic textual similarity ; hierarchical clustering

Sažetak
Online debates sparkle argumentative discussions from which generally accepted arguments often emerge. We consider the task of unsupervised identification of prominent argument in online debates. As a first step, in this paper we perform a cluster analysis using semantic textual similarity to detect similar arguments. We perform a preliminary cluster evaluation and error analysis based on cluster-class matching against a manually labeled dataset.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Jan Šnajder (autor)

Citiraj ovu publikaciju:

Boltužić, Filip; Šnajder, Jan
Identifying Prominent Arguments in Online Debates using Semantic Textual Similarity // Proceedings of the 2nd Workshop on Argumentation Mining (ArgMining 2015)
Denver (CO): Association for Computational Linguistics (ACL), 2015. str. 110-115 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Boltužić, F. & Šnajder, J. (2015) Identifying Prominent Arguments in Online Debates using Semantic Textual Similarity. U: Proceedings of the 2nd Workshop on Argumentation Mining (ArgMining 2015).
@article{article, author = {Boltu\v{z}i\'{c}, Filip and \v{S}najder, Jan}, year = {2015}, pages = {110-115}, keywords = {Argumentation mining, online debates, semantic textual similarity, hierarchical clustering}, title = {Identifying Prominent Arguments in Online Debates using Semantic Textual Similarity}, keyword = {Argumentation mining, online debates, semantic textual similarity, hierarchical clustering}, publisher = {Association for Computational Linguistics (ACL)}, publisherplace = {Denver (CO), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Boltu\v{z}i\'{c}, Filip and \v{S}najder, Jan}, year = {2015}, pages = {110-115}, keywords = {Argumentation mining, online debates, semantic textual similarity, hierarchical clustering}, title = {Identifying Prominent Arguments in Online Debates using Semantic Textual Similarity}, keyword = {Argumentation mining, online debates, semantic textual similarity, hierarchical clustering}, publisher = {Association for Computational Linguistics (ACL)}, publisherplace = {Denver (CO), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }




Contrast
Increase Font
Decrease Font
Dyslexic Font