Pregled bibliografske jedinice broj: 784190
Learning from Depth Sensor Data using Inductive Logic Programming
Learning from Depth Sensor Data using Inductive Logic Programming // Proceedings of the 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT) / Ribić, Samir ; Zajko, Ernedin ; Sadžak, Aida (ur.).
Sarajevo: Institute of Electrical and Electronics Engineers (IEEE), 2015. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 784190 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Learning from Depth Sensor Data using Inductive Logic Programming
Autori
Drole, Miha ; Vračar, Petar ; Stančić, Ivo ; Musić, Josip ; Panjkota, Ante ; Kononenko, Igor ; Kukar, Matjaž
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT)
/ Ribić, Samir ; Zajko, Ernedin ; Sadžak, Aida - Sarajevo : Institute of Electrical and Electronics Engineers (IEEE), 2015
ISBN
978-1-4673-8145-1
Skup
2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT)
Mjesto i datum
Sarajevo, Bosna i Hercegovina, 29.10.2015. - 31.10.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
supervised learning; context awareness; assistive devices; knowlegde discovery
Sažetak
The problem of detecting objects and their movements in sensor data is of crucial importance in providing safe navigation through both indoor and outdoor environments for the visually impaired. In our setting we use depth- sensor data obtained from a simulator and use inductive logic programming (ILP), a subfield of machine learning that deals with learning concept descriptions, to learn how to detect borders, find the border that is nearest to some point of interest, and border correspondence through time. We demonstrate how ILP can be used to tackle this problem in an incremental manner by using previously learned predicates to construct more complex ones. The learned concept descriptions show high (> 90%) accuracy and their natural language interpretation closely matches an intuitive understanding of their meaning.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split