Pregled bibliografske jedinice broj: 783860
Finding an optimal seating arrangement for employees traveling to an event
Finding an optimal seating arrangement for employees traveling to an event // Croatian operational research review, 6 (2015), 2; 419-427 doi:10.17535/crorr.2015.0032 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 783860 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Finding an optimal seating arrangement for employees traveling to an event
Autori
Čerkez, Ninoslav ; Čorić, Rebeka ; Đumić, Mateja ; Matijević, Domagoj
Izvornik
Croatian operational research review (1848-0225) 6
(2015), 2;
419-427
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Integer Linear Program ; branch and bound ; cutting plane method
Sažetak
The paper deals with modelling a specific problem called the Optimal Seating Arrangement (OSA) as an Integer Linear Program and demonstrated that the problem can be efficiently solved by combining branch-and- bound and cutting plane methods. OSA refers to a specific scenario that could possibly happen in a corporative environment, i.e. when a company endeavors to minimize travel costs when employees travel to an organized event. Each employee is free to choose the time to travel to and from an event and it depends on personal reasons. The paper differentiates between using different travel possibilities in the OSA problem, such as using company assigned or a company owned vehicles, private vehicles or using public transport, if needed. Also, a user-friendly web application was made and is available to the public for testing purposes.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo
POVEZANOST RADA
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku,
Visoka škola za informacijske tehnologije, Zagreb
Profili:
Ninoslav Čerkez
(autor)
Mateja Đumić
(autor)
Domagoj Matijević
(autor)
Rebeka Čorić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- EconLit
Uključenost u ostale bibliografske baze podataka::
- INSPEC
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts