Pregled bibliografske jedinice broj: 783029
Circular Curves in Euclidean Plane
Circular Curves in Euclidean Plane // Book of abstracts of the 18th Scientific-Professional Colloquium on Geometry and Graphics
Beli Manastir, Hrvatska, 2015. (predavanje, nije recenziran, sažetak, stručni)
CROSBI ID: 783029 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Circular Curves in Euclidean Plane
Autori
Jurkin, Ema ; Gorjanc, Sonja
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, stručni
Izvornik
Book of abstracts of the 18th Scientific-Professional Colloquium on Geometry and Graphics
/ - , 2015
Skup
18th Scientific-Professional Colloquium on Geometry and Graphics
Mjesto i datum
Beli Manastir, Hrvatska, 06.09.2015. - 10.09.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
circular curves; Euclidean plane; absolute points
Sažetak
In the real projective plane the Euclidean metric defines the Euclidean plane with the \textit{; ; absolute}; ; (\textit{; ; circular}; ; ) \textit{; ; points}; ; $(0, 1, i)$ and $(0, 1, -i)$. An algebraic curve passing through the absolute points is called \textit{; ; circular curve}; ; . If it contains absolute points as its $p-$fold points, the curve is called $p-$\textit{; ; circular}; ; . Every $p-$circular curve has the implicit equation in homogeneous coordinates of the following form: \begin{; ; equation}; ; \nonumber \sum_{; ; j=0}; ; ^{; ; p-1}; ; x_0^j (x_1^{; ; 2}; ; +x_2^{; ; 2}; ; )^{; ; p-j}; ; f_{; ; n-2p+j}; ; (x_1, x_2)+\sum_{; ; j=p}; ; ^{; ; n}; ; x_0^j g_{; ; n-j}; ; (x_1, x_2)=0, \end{; ; equation}; ; where $f_{; ; k}; ; $, $k=n-2p, ..., n-p-1$, and $g_{; ; k}; ; $, $k=0, ..., n-p$, are homogeneous algebraic polynomials of degree $k$. \\ Obviously $n$ must be at least $2p$. If $n=2p$, the curve is called \textit{; ; entirely circular}; ; . We present some properties of circular curves and visualize their forms with the program \textit{; ; Mathematica}; ; .
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Građevinski fakultet, Zagreb,
Rudarsko-geološko-naftni fakultet, Zagreb