Pregled bibliografske jedinice broj: 782139
Measurement of Road Traffic Parameters based on Multi-Vehicle Tracking
Measurement of Road Traffic Parameters based on Multi-Vehicle Tracking // Proceedings of the Croatian Computer Vision Workshop CCVW2015 / Lončarić, Sven ; Krapac, Josip (ur.).
Zagreb: Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2015. str. 3-8 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 782139 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Measurement of Road Traffic Parameters based on Multi-Vehicle Tracking
Autori
Kovačić, Kristian ; Ivanjko, Edouard ; Jelušić, Niko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the Croatian Computer Vision Workshop CCVW2015
/ Lončarić, Sven ; Krapac, Josip - Zagreb : Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2015, 3-8
Skup
Fourth Croatian Computer Vision Workshop CCVW2015
Mjesto i datum
Zagreb, Hrvatska, 22.09.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Computer vision; local binary patters; extended Kalman Filter; road vehicles; traffic parameters
Sažetak
Development of computing power and cheap video cameras enabled today’s traffic management systems to include more cameras and computer vision based applications for monitoring and control of road transportation systems. Combined with image processing algorithms cameras are used as sensors to measure road traffic parameters like flow volume, origin-destination matrices, classify vehicles, etc. In this paper we propose a system for measurement of road traffic parameters (basic motion model parameters and macroscopic traffic parameters). The system is based on Local Binary Pattern image features classification with a cascade of Gentle Adaboost classifiers to determine vehicle existence and its location in an image. Additionally, vehicle tracking and counting in a road traffic video is performed by using Extended Kalman Filter and virtual markers. The newly proposed system is compared with a system based on background subtraction. Comparison is performed by means of evaluating execution time and accuracy.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Tehnologija prometa i transport
POVEZANOST RADA
Ustanove:
Fakultet prometnih znanosti, Zagreb