Pregled bibliografske jedinice broj: 779377
Some Families of Identities for the Integer Partition Function
Some Families of Identities for the Integer Partition Function // Mathematical communications, 20 (2015), 2; 193-200 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 779377 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Some Families of Identities for the Integer Partition Function
Autori
Martinjak, Ivica ; Svrtan, Dragutin
Izvornik
Mathematical communications (1331-0623) 20
(2015), 2;
193-200
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
partition identity ; partition function ; Euler function ; pentagonal numbers ; Rogers-Ramanujan identities
Sažetak
We give series of recursive identities for the number of partitions with exactly $k$ parts and with constraints on both the minimal difference among the parts and the minimal part. Using these results we demonstrate that the number of partitions of $n$ is equal to the number of partitions of $2n+d{; ; ; ; n \choose 2}; ; ; ; $ of length $n$, with $d$-distant parts. We also provide a direct proof for this identity. This work is the result of our aim at finding a bijective proof for Rogers-Ramanujan identities.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus