Pregled bibliografske jedinice broj: 777054
Finiteness results for F-Diophantine sets
Finiteness results for F-Diophantine sets // Monatshefte für Mathematik, 180 (2016), 3; 469-484 doi:10.1007/s00605-015-0824-6 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 777054 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Finiteness results for F-Diophantine sets
Autori
Berczes, Attila ; Dujella, Andrej ; Hajdu, Lajos ; Tengegy, Szabolcs
Izvornik
Monatshefte für Mathematik (0026-9255) 180
(2016), 3;
469-484
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Diophantine sets; polynomials in two variables; binary forms; power values of polynomials.
(Diophantine sets; polynomials in two variables; binary forms; power values of polynomials)
Sažetak
Diophantine sets, i.e. sets of positive integers A with the property that the product of any two distinct elements of A increased by 1 is a perfect square, have a vast literature, dating back to Diophantus of Alexandria. The most important result states that such sets A can have at most ve elements, and there are only nitely many of them with ve elements. Beside this, there are a large number of niteness results, concerning the original problem and some of its many variants. In this paper we introduce the notion of, and prove niteness results on so called (F ; m)-Diophantine sets A, where F is a bivariate polynomial with integer coecients, and instead of requiring ab + 1 to be a square for all distinct a ; b in A, the numbers F(a ; b) should be full m-th powers. The particular choice F(x ; y) = xy + 1 and m = 2 gives back the original problem.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Andrej Dujella
(autor)
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts