Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 777054

Finiteness results for F-Diophantine sets


Berczes, Attila; Dujella, Andrej; Hajdu, Lajos; Tengegy, Szabolcs
Finiteness results for F-Diophantine sets // Monatshefte für Mathematik, 180 (2016), 3; 469-484 doi:10.1007/s00605-015-0824-6 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 777054 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Finiteness results for F-Diophantine sets

Autori
Berczes, Attila ; Dujella, Andrej ; Hajdu, Lajos ; Tengegy, Szabolcs

Izvornik
Monatshefte für Mathematik (0026-9255) 180 (2016), 3; 469-484

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Diophantine sets; polynomials in two variables; binary forms; power values of polynomials.
(Diophantine sets; polynomials in two variables; binary forms; power values of polynomials)

Sažetak
Diophantine sets, i.e. sets of positive integers A with the property that the product of any two distinct elements of A increased by 1 is a perfect square, have a vast literature, dating back to Diophantus of Alexandria. The most important result states that such sets A can have at most ve elements, and there are only nitely many of them with ve elements. Beside this, there are a large number of niteness results, concerning the original problem and some of its many variants. In this paper we introduce the notion of, and prove niteness results on so called (F ; m)-Diophantine sets A, where F is a bivariate polynomial with integer coecients, and instead of requiring ab + 1 to be a square for all distinct a ; b in A, the numbers F(a ; b) should be full m-th powers. The particular choice F(x ; y) = xy + 1 and m = 2 gives back the original problem.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Andrej Dujella (autor)

Citiraj ovu publikaciju:

Berczes, Attila; Dujella, Andrej; Hajdu, Lajos; Tengegy, Szabolcs
Finiteness results for F-Diophantine sets // Monatshefte für Mathematik, 180 (2016), 3; 469-484 doi:10.1007/s00605-015-0824-6 (međunarodna recenzija, članak, znanstveni)
Berczes, A., Dujella, A., Hajdu, L. & Tengegy, S. (2016) Finiteness results for F-Diophantine sets. Monatshefte für Mathematik, 180 (3), 469-484 doi:10.1007/s00605-015-0824-6.
@article{article, author = {Berczes, Attila and Dujella, Andrej and Hajdu, Lajos and Tengegy, Szabolcs}, year = {2016}, pages = {469-484}, DOI = {10.1007/s00605-015-0824-6}, keywords = {Diophantine sets, polynomials in two variables, binary forms, power values of polynomials.}, journal = {Monatshefte f\"{u}r Mathematik}, doi = {10.1007/s00605-015-0824-6}, volume = {180}, number = {3}, issn = {0026-9255}, title = {Finiteness results for F-Diophantine sets}, keyword = {Diophantine sets, polynomials in two variables, binary forms, power values of polynomials.} }
@article{article, author = {Berczes, Attila and Dujella, Andrej and Hajdu, Lajos and Tengegy, Szabolcs}, year = {2016}, pages = {469-484}, DOI = {10.1007/s00605-015-0824-6}, keywords = {Diophantine sets, polynomials in two variables, binary forms, power values of polynomials}, journal = {Monatshefte f\"{u}r Mathematik}, doi = {10.1007/s00605-015-0824-6}, volume = {180}, number = {3}, issn = {0026-9255}, title = {Finiteness results for F-Diophantine sets}, keyword = {Diophantine sets, polynomials in two variables, binary forms, power values of polynomials} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font