Pregled bibliografske jedinice broj: 775615
Harmonic Evolutes of Timelike Ruled Surfaces in Minkowski Space
Harmonic Evolutes of Timelike Ruled Surfaces in Minkowski Space // 18th Scientific Proffesional Colloquium on Geometry and Graphics / prof. dr. sc T. Došlić, dr. sc E. Jurkin (ur.).
Zagreb: Hrvatsko društvo za geometriju i grafiku, 2015. str. 29-29 (predavanje, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 775615 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Harmonic Evolutes of Timelike Ruled Surfaces in
Minkowski Space
Autori
Filipan, Ivana ; Milin Šipuš, Željka
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
18th Scientific Proffesional Colloquium on Geometry and Graphics
Mjesto i datum
Beli Manastir, Hrvatska, 06.09.2015. - 10.09.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
harmonijska evoluta ; B-skrol
(harmonic evolute ; b-scrolls)
Sažetak
Let S be a ruled surface in 3-dimensional Minkowski space parameterized by x(u, v) = c(u) + ve(u), where c(u) is a base curve and e(u) a non- vanishing vector field along c which generates the rulings. Ruled surfaces in Minkowski space are classified with respect to the casual character of their rulings which can be either space-like, timelike or null (light- like). A time-like ruled surface inherits the pseudo-Riemannian metric of index 1 from the ambient space. It is generated in the following cases: when c is a space-like curve and e(u) a time-like field (then e′(u) is space- like) or vice-versa, when c is a time-like curve and e(u) a space-like field (with e ′ (u) either null or non-null). It is also generated when c′ (u), e(u) are both null. The last ruled surfaces are called the null-scrolls, or in the special case, the B-scrolls. In this presentation we investigate properties of harmonic evolutes of time-like ruled surfaces in Minkowski space. The harmonic evolute of a surface is the locus of points which are harmonic conjugates of a point of a surface with respect to its centers of curvature p1 and p2.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Rudarsko-geološko-naftni fakultet, Zagreb