Pregled bibliografske jedinice broj: 773947
Nonlinear Sparse Component Analysis with a Reference: Variable Selection in Genomics and Proteomics
Nonlinear Sparse Component Analysis with a Reference: Variable Selection in Genomics and Proteomics // 12th International Conference, LVA/ICA 2015, Liberec, Czech Republic, August 25-28, 2015, Proceedings / Vincent, Emanuel ; Yeredor, Ari ; Kolodovsky, Zbinyek ; Tichavsky, Petr (ur.).
Heidelberg: Springer, 2015. str. 168-175 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 773947 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Nonlinear Sparse Component Analysis with a Reference: Variable Selection in Genomics and Proteomics
Autori
Kopriva, Ivica ; Kapitanović, Sanja ; Čačev, Tamara
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
12th International Conference, LVA/ICA 2015, Liberec, Czech Republic, August 25-28, 2015, Proceedings
/ Vincent, Emanuel ; Yeredor, Ari ; Kolodovsky, Zbinyek ; Tichavsky, Petr - Heidelberg : Springer, 2015, 168-175
ISBN
978-3-319-22482-4
Skup
12th International Conference on Latent Variable Analysis and Signal Separation LVA/ICA 2015
Mjesto i datum
Liberec, Češka Republika, 25.08.2015. - 28.08.2015
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Variable selection; Nonlinear mixture model; Empirical kernel maps; Sparse component analysis
Sažetak
Many scenarios occurring in genomics and proteomics involve small number of labeled data and large number of variables. To create prediction models robust to overfitting variable selection is necessary. We propose variable selection method using nonlinear sparse component analysis with a reference representing either negative (healthy) or positive (cancer) class. Thereby, component comprised of cancer related variables is automatically inferred from the geometry of nonlinear mixture model with a reference. Proposed method is compared with 3 supervised and 2 unsupervised variable selection methods on two-class problems using 2 genomic and 2 proteomic datasets. Obtained results, which include analysis of biological relevance of selected genes, are comparable with those achieved by supervised methods. Thus, proposed method can possibly perform better on unseen data of the same cancer type.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo, Temeljne medicinske znanosti
POVEZANOST RADA
Ustanove:
Institut "Ruđer Bošković", Zagreb