Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 773127

Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem


Truhar, Ninoslav; Miodragović, Suzana
Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem // Applied numerical mathematics, 98 (2015), 106-121 doi:10.1016/j.apnum.2015.08.006 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 773127 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem

Autori
Truhar, Ninoslav ; Miodragović, Suzana

Izvornik
Applied numerical mathematics (0168-9274) 98 (2015); 106-121

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
perturbation of matrix pairs; perturbation of eigenvalues and eigenvectors; hyperbolic eigenvalue problem; sin theta theorem

Sažetak
In this paper, new relative perturbation bounds for the eigenvalues as well as for the eigensubspaces are developed for definite Hermitian matrix pairs and the quadratic hyperbolic eigenvalue problem. First, we derive relative perturbation bounds for the eigenvalues and the $\sin \Theta$ type theorems for the eigensubspaces of the definite matrix pairs $(A, B)$, where both $A, B \in \mathbb{; ; ; ; C}; ; ; ; ^{; ; ; ; m\times m}; ; ; ; $ are Hermitian nonsingular matrices with particular emphasis, where $B$ is a diagonal of $\pm 1$. Further, we consider the following quadratic hyperbolic eigenvalue problem $(\mu^2 M + \mu C + K) x =0$, where $M, C, K \in \mathbb{; ; ; ; C}; ; ; ; ^{; ; ; ; n\times n}; ; ; ; $ are given Hermitian matrices. Using proper linearization and new relative perturbation bounds for definite matrix pairs $(A, B)$, we develop corresponding relative perturbation bounds for the eigenvalues and the $\sin \Theta$ type theorems for the eigensubspaces for the considered quadratic hyperbolic eigenvalue problem. The new bounds are uniform and depend only on matrices $M$, $C$, $K$, perturbations $\delta M$, $\delta C$ and $\delta K$ and standard relative gaps. The quality of new bounds is illustrated through numerical examples.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2014-09-9540 - Optimizacija parametarski ovisnih mehaničkih sustava (OptPDMechSys) (Truhar, Ninoslav, HRZZ - 2014-09) ( CroRIS)

Ustanove:
Sveučilište u Osijeku, Odjel za matematiku

Profili:

Avatar Url Ninoslav Truhar (autor)

Avatar Url Suzana Miodragović (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Truhar, Ninoslav; Miodragović, Suzana
Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem // Applied numerical mathematics, 98 (2015), 106-121 doi:10.1016/j.apnum.2015.08.006 (međunarodna recenzija, članak, znanstveni)
Truhar, N. & Miodragović, S. (2015) Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem. Applied numerical mathematics, 98, 106-121 doi:10.1016/j.apnum.2015.08.006.
@article{article, author = {Truhar, Ninoslav and Miodragovi\'{c}, Suzana}, year = {2015}, pages = {106-121}, DOI = {10.1016/j.apnum.2015.08.006}, keywords = {perturbation of matrix pairs, perturbation of eigenvalues and eigenvectors, hyperbolic eigenvalue problem, sin theta theorem}, journal = {Applied numerical mathematics}, doi = {10.1016/j.apnum.2015.08.006}, volume = {98}, issn = {0168-9274}, title = {Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem}, keyword = {perturbation of matrix pairs, perturbation of eigenvalues and eigenvectors, hyperbolic eigenvalue problem, sin theta theorem} }
@article{article, author = {Truhar, Ninoslav and Miodragovi\'{c}, Suzana}, year = {2015}, pages = {106-121}, DOI = {10.1016/j.apnum.2015.08.006}, keywords = {perturbation of matrix pairs, perturbation of eigenvalues and eigenvectors, hyperbolic eigenvalue problem, sin theta theorem}, journal = {Applied numerical mathematics}, doi = {10.1016/j.apnum.2015.08.006}, volume = {98}, issn = {0168-9274}, title = {Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem}, keyword = {perturbation of matrix pairs, perturbation of eigenvalues and eigenvectors, hyperbolic eigenvalue problem, sin theta theorem} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font