Pregled bibliografske jedinice broj: 773127
Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem
Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem // Applied numerical mathematics, 98 (2015), 106-121 doi:10.1016/j.apnum.2015.08.006 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 773127 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem
Autori
Truhar, Ninoslav ; Miodragović, Suzana
Izvornik
Applied numerical mathematics (0168-9274) 98
(2015);
106-121
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
perturbation of matrix pairs; perturbation of eigenvalues and eigenvectors; hyperbolic eigenvalue problem; sin theta theorem
Sažetak
In this paper, new relative perturbation bounds for the eigenvalues as well as for the eigensubspaces are developed for definite Hermitian matrix pairs and the quadratic hyperbolic eigenvalue problem. First, we derive relative perturbation bounds for the eigenvalues and the $\sin \Theta$ type theorems for the eigensubspaces of the definite matrix pairs $(A, B)$, where both $A, B \in \mathbb{; ; ; ; C}; ; ; ; ^{; ; ; ; m\times m}; ; ; ; $ are Hermitian nonsingular matrices with particular emphasis, where $B$ is a diagonal of $\pm 1$. Further, we consider the following quadratic hyperbolic eigenvalue problem $(\mu^2 M + \mu C + K) x =0$, where $M, C, K \in \mathbb{; ; ; ; C}; ; ; ; ^{; ; ; ; n\times n}; ; ; ; $ are given Hermitian matrices. Using proper linearization and new relative perturbation bounds for definite matrix pairs $(A, B)$, we develop corresponding relative perturbation bounds for the eigenvalues and the $\sin \Theta$ type theorems for the eigensubspaces for the considered quadratic hyperbolic eigenvalue problem. The new bounds are uniform and depend only on matrices $M$, $C$, $K$, perturbations $\delta M$, $\delta C$ and $\delta K$ and standard relative gaps. The quality of new bounds is illustrated through numerical examples.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-9540 - Optimizacija parametarski ovisnih mehaničkih sustava (OptPDMechSys) (Truhar, Ninoslav, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus