Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 772679

Social Link Prediction from Homophilous Relationships Using Probabilistic Logic


Lauc, Davor; Grgić, Siniša
Social Link Prediction from Homophilous Relationships Using Probabilistic Logic // Proceedings of the 2nd International Conference on Research Methods in Management and Social Sciences (ICRMMS-2015) / Walsh, John (ur.).
Bangkok: IFRD, 2015. str. 45-57 (plenarno, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 772679 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Social Link Prediction from Homophilous Relationships Using Probabilistic Logic

Autori
Lauc, Davor ; Grgić, Siniša

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 2nd International Conference on Research Methods in Management and Social Sciences (ICRMMS-2015) / Walsh, John - Bangkok : IFRD, 2015, 45-57

Skup
International Conference on Research Methods in Management and Social Sciences (2 ; 2015)

Mjesto i datum
Bangkok, Tajland, 07.02.2015. - 08.02.2015

Vrsta sudjelovanja
Plenarno

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Probabilitic Logic; Link Prediction

Sažetak
The importance of homophily in network formation is a well-known fact, but link prediction models that use homophilous relations among nodes are rare compared to ones based on the network topology. This paper investigates the possibilities of using available homophilous relations to build a link prediction model using probabilistic logic techniques. A subset of egocentric networks of 10.021 actors was collected, together with basic socio-demographic data from which homophilous relations are deduced. The research demonstrates that the following relations are significant and useful when building a prediction model: physical proximity of actors, having common surname, being coworker, having same place of birth and generational distance. For every relation or combination, the probability function is estimated based on the training subset of the collected dataset. All homophilous relations are combined into an integrative model using a probabilistic logic framework. The predictive power of the model was evaluated and its performance was assessed as excellent.

Izvorni jezik
Engleski

Znanstvena područja
Filozofija



POVEZANOST RADA


Ustanove:
Filozofski fakultet, Zagreb

Profili:

Avatar Url Siniša Grgić (autor)

Avatar Url Davor Lauc (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Lauc, Davor; Grgić, Siniša
Social Link Prediction from Homophilous Relationships Using Probabilistic Logic // Proceedings of the 2nd International Conference on Research Methods in Management and Social Sciences (ICRMMS-2015) / Walsh, John (ur.).
Bangkok: IFRD, 2015. str. 45-57 (plenarno, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Lauc, D. & Grgić, S. (2015) Social Link Prediction from Homophilous Relationships Using Probabilistic Logic. U: Walsh, J. (ur.)Proceedings of the 2nd International Conference on Research Methods in Management and Social Sciences (ICRMMS-2015).
@article{article, author = {Lauc, Davor and Grgi\'{c}, Sini\v{s}a}, editor = {Walsh, J.}, year = {2015}, pages = {45-57}, keywords = {Probabilitic Logic, Link Prediction}, title = {Social Link Prediction from Homophilous Relationships Using Probabilistic Logic}, keyword = {Probabilitic Logic, Link Prediction}, publisher = {IFRD}, publisherplace = {Bangkok, Tajland} }
@article{article, author = {Lauc, Davor and Grgi\'{c}, Sini\v{s}a}, editor = {Walsh, J.}, year = {2015}, pages = {45-57}, keywords = {Probabilitic Logic, Link Prediction}, title = {Social Link Prediction from Homophilous Relationships Using Probabilistic Logic}, keyword = {Probabilitic Logic, Link Prediction}, publisher = {IFRD}, publisherplace = {Bangkok, Tajland} }




Contrast
Increase Font
Decrease Font
Dyslexic Font