Pregled bibliografske jedinice broj: 772013
On the extendability of particular classes of constant dimension codes
On the extendability of particular classes of constant dimension codes // Designs, codes and cryptography, 79 (2016), 3; 407-422 doi:10.1007/s10623-015-0115-1 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 772013 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the extendability of particular classes of constant dimension codes
Autori
Nakić, Anamari ; Storme, Leo
Izvornik
Designs, codes and cryptography (0925-1022) 79
(2016), 3;
407-422
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Random Network Coding; Extendability of Codes; Minihypers
Sažetak
In classical coding theory, diff erent types of extendability results of codes are known. A classical example is the result stating that every (4, q^2-1, 3)-code over an alphabet of order q is extendable to a (4, q^2, 3)-code. A constant dimension subspace code is a set of (k 1)-spaces in the projective space PG(n-1, q), which pairwise intersect in subspaces of dimension upper bounded by a specifi c parameter. The theoretical upper bound on the sizes of these constant dimension subspace codes is given by the Johnson bound. This Johnson bound relies on the upper bound on the size of partial s-spreads, i.e., sets of pairwise disjoint s-spaces, in a projective space PG(N, q). When N +1 = 0 (mod s+1), it is possible to partition PG(N, q) into s-spaces, also called s-spreads of PG(N, q). In the finite geometry research, extendability results on large partial s-spreads to s-spreads in PG(N, q) are known when N + 1 = 0 (mod s + 1). This motivates the study to determine similar extendability results on constant dimension subspace codes whose size is very close to the Johnson bound. By developing geometrical arguments, avoiding having to rely on extendability results on partial s-spreads, such extendability results for constant dimension subspace codes are presented.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Anamari Nakić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus