Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 772013

On the extendability of particular classes of constant dimension codes


Nakić, Anamari; Storme, Leo
On the extendability of particular classes of constant dimension codes // Designs, codes and cryptography, 79 (2016), 3; 407-422 doi:10.1007/s10623-015-0115-1 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 772013 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On the extendability of particular classes of constant dimension codes

Autori
Nakić, Anamari ; Storme, Leo

Izvornik
Designs, codes and cryptography (0925-1022) 79 (2016), 3; 407-422

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Random Network Coding; Extendability of Codes; Minihypers

Sažetak
In classical coding theory, diff erent types of extendability results of codes are known. A classical example is the result stating that every (4, q^2-1, 3)-code over an alphabet of order q is extendable to a (4, q^2, 3)-code. A constant dimension subspace code is a set of (k 􀀀1)-spaces in the projective space PG(n􀀀-1, q), which pairwise intersect in subspaces of dimension upper bounded by a specifi c parameter. The theoretical upper bound on the sizes of these constant dimension subspace codes is given by the Johnson bound. This Johnson bound relies on the upper bound on the size of partial s-spreads, i.e., sets of pairwise disjoint s-spaces, in a projective space PG(N, q). When N +1 = 0 (mod s+1), it is possible to partition PG(N, q) into s-spaces, also called s-spreads of PG(N, q). In the finite geometry research, extendability results on large partial s-spreads to s-spreads in PG(N, q) are known when N + 1 = 0 (mod s + 1). This motivates the study to determine similar extendability results on constant dimension subspace codes whose size is very close to the Johnson bound. By developing geometrical arguments, avoiding having to rely on extendability results on partial s-spreads, such extendability results for constant dimension subspace codes are presented.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Anamari Nakić (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Nakić, Anamari; Storme, Leo
On the extendability of particular classes of constant dimension codes // Designs, codes and cryptography, 79 (2016), 3; 407-422 doi:10.1007/s10623-015-0115-1 (međunarodna recenzija, članak, znanstveni)
Nakić, A. & Storme, L. (2016) On the extendability of particular classes of constant dimension codes. Designs, codes and cryptography, 79 (3), 407-422 doi:10.1007/s10623-015-0115-1.
@article{article, author = {Naki\'{c}, Anamari and Storme, Leo}, year = {2016}, pages = {407-422}, DOI = {10.1007/s10623-015-0115-1}, keywords = {Random Network Coding, Extendability of Codes, Minihypers}, journal = {Designs, codes and cryptography}, doi = {10.1007/s10623-015-0115-1}, volume = {79}, number = {3}, issn = {0925-1022}, title = {On the extendability of particular classes of constant dimension codes}, keyword = {Random Network Coding, Extendability of Codes, Minihypers} }
@article{article, author = {Naki\'{c}, Anamari and Storme, Leo}, year = {2016}, pages = {407-422}, DOI = {10.1007/s10623-015-0115-1}, keywords = {Random Network Coding, Extendability of Codes, Minihypers}, journal = {Designs, codes and cryptography}, doi = {10.1007/s10623-015-0115-1}, volume = {79}, number = {3}, issn = {0925-1022}, title = {On the extendability of particular classes of constant dimension codes}, keyword = {Random Network Coding, Extendability of Codes, Minihypers} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font