Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 769712

Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields


Jadrijević, Borka; Franušić, Zrinka
Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields // 29th Journées Arithmétiques
Debrecen, Mađarska, 2015. str. 52-52 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 769712 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields

Autori
Jadrijević, Borka ; Franušić, Zrinka

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
29th Journées Arithmétiques / - , 2015, 52-52

Skup
29th Journées Arithmétiques, Debrecen

Mjesto i datum
Debrecen, Mađarska, 06.07.2015. - 10.07.2015

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
relative power integral bases ; system of relative Pellian equations ; relative Thue equations

Sažetak
Let M be an imaginary quadratic field with ring of integers Z_{; ; M}; ; . Let ξ be a root of the polynomial f(x)=x⁴-2cx³+2x²+2cx+1, c∈Z_{; ; M}; ; , c≠0. We consider an infinite family of octic fields K_{; ; c}; ; =M(ξ)with ring of integers Z_{; ; K_{; ; c}; ; }; ; . Since the integral basis of K_{; ; c}; ; is not known in a parametric form, our goal is to determine all generators of the O=Z_{; ; M}; ; [ξ] over Z_{; ; M}; ; (instead of Z_{; ; K_{; ; c}; ; }; ; over Z_{; ; M}; ; ). We show that our problem reduces to solving the system of relative Pellian equations cV²-(c+2)U²=-2μ, cZ²-(c-2)U²=2μ where μ is an unit in M. We solve the system completely and find that all non-equivalent generators of the power integral basis of O over Z_{; ; M}; ; are given by α=ξ, 2ξ-2cξ²+ξ³ for |c|≥159108.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Prirodoslovno-matematički fakultet, Split

Profili:

Avatar Url Zrinka Franušić (autor)

Avatar Url Borka Jadrijević (autor)

Citiraj ovu publikaciju:

Jadrijević, Borka; Franušić, Zrinka
Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields // 29th Journées Arithmétiques
Debrecen, Mađarska, 2015. str. 52-52 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Jadrijević, B. & Franušić, Z. (2015) Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields. U: 29th Journées Arithmétiques.
@article{article, author = {Jadrijevi\'{c}, Borka and Franu\v{s}i\'{c}, Zrinka}, year = {2015}, pages = {52-52}, keywords = {relative power integral bases, system of relative Pellian equations, relative Thue equations}, title = {Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields}, keyword = {relative power integral bases, system of relative Pellian equations, relative Thue equations}, publisherplace = {Debrecen, Ma\djarska} }
@article{article, author = {Jadrijevi\'{c}, Borka and Franu\v{s}i\'{c}, Zrinka}, year = {2015}, pages = {52-52}, keywords = {relative power integral bases, system of relative Pellian equations, relative Thue equations}, title = {Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields}, keyword = {relative power integral bases, system of relative Pellian equations, relative Thue equations}, publisherplace = {Debrecen, Ma\djarska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font