Pregled bibliografske jedinice broj: 769712
Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields
Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields // 29th Journées Arithmétiques
Debrecen, Mađarska, 2015. str. 52-52 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 769712 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields
Autori
Jadrijević, Borka ; Franušić, Zrinka
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
29th Journées Arithmétiques
/ - , 2015, 52-52
Skup
29th Journées Arithmétiques, Debrecen
Mjesto i datum
Debrecen, Mađarska, 06.07.2015. - 10.07.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
relative power integral bases ; system of relative Pellian equations ; relative Thue equations
Sažetak
Let M be an imaginary quadratic field with ring of integers Z_{; ; M}; ; . Let ξ be a root of the polynomial f(x)=x⁴-2cx³+2x²+2cx+1, c∈Z_{; ; M}; ; , c≠0. We consider an infinite family of octic fields K_{; ; c}; ; =M(ξ)with ring of integers Z_{; ; K_{; ; c}; ; }; ; . Since the integral basis of K_{; ; c}; ; is not known in a parametric form, our goal is to determine all generators of the O=Z_{; ; M}; ; [ξ] over Z_{; ; M}; ; (instead of Z_{; ; K_{; ; c}; ; }; ; over Z_{; ; M}; ; ). We show that our problem reduces to solving the system of relative Pellian equations cV²-(c+2)U²=-2μ, cZ²-(c-2)U²=2μ where μ is an unit in M. We solve the system completely and find that all non-equivalent generators of the power integral basis of O over Z_{; ; M}; ; are given by α=ξ, 2ξ-2cξ²+ξ³ for |c|≥159108.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Prirodoslovno-matematički fakultet, Split