Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 769528

Properties of mappings generated with inequalities for isotonic linear functionals


Nikolova, Ludmila; Varošanec, Sanja
Properties of mappings generated with inequalities for isotonic linear functionals // Proceedings of the International Conference Constructive Theory of Functions, Sozopol, 2013 / Ivanov, Kamen ; Nikolov, Geno ; Uluchev, Rumen (ur.).
Sofija: Prof.Marin Drinov Academic Publ. House, 2014. str. 199-215 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 769528 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Properties of mappings generated with inequalities for isotonic linear functionals

Autori
Nikolova, Ludmila ; Varošanec, Sanja

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the International Conference Constructive Theory of Functions, Sozopol, 2013 / Ivanov, Kamen ; Nikolov, Geno ; Uluchev, Rumen - Sofija : Prof.Marin Drinov Academic Publ. House, 2014, 199-215

ISBN
978-954-322-811-9

Skup
The International Conference Constructive Theory of Functions, Sozopol, June 9-14, 2013, Bulgaria

Mjesto i datum
Sozopol, Bugarska, 09.06.2013. - 14.06.2013

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
isotonic linear functional; $h$-concave function; quasilinearity; Chebyshev's functional; Jensen's functional

Sažetak
We consider mappings which are generated by inequalities for isotonic linear functionals, such as Chebyshev inequality, the Beckenbach-Dresher and the Jensen-Mercer inequality, Jensen's, H\" older's, Minkowski's and their reversed versions. Properties of quasilinearity, boundedness and monotonicity are proved. Also, we mention properties of a composite functional $x\mapsto h(v(x))\Phi\left(\frac{;g(x)};{;v(x)};\right)$ where $g$ and $v$ are functions associated with mappings generated by inequalites and $\Phi$ is $h$-concave monotone function.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
058-1170889-1050 - Ocjene za funkcionale na prostorima funkcija (Perić, Ivan, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prehrambeno-biotehnološki fakultet, Zagreb

Profili:

Avatar Url Sanja Varošanec (autor)


Citiraj ovu publikaciju:

Nikolova, Ludmila; Varošanec, Sanja
Properties of mappings generated with inequalities for isotonic linear functionals // Proceedings of the International Conference Constructive Theory of Functions, Sozopol, 2013 / Ivanov, Kamen ; Nikolov, Geno ; Uluchev, Rumen (ur.).
Sofija: Prof.Marin Drinov Academic Publ. House, 2014. str. 199-215 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Nikolova, L. & Varošanec, S. (2014) Properties of mappings generated with inequalities for isotonic linear functionals. U: Ivanov, K., Nikolov, G. & Uluchev, R. (ur.)Proceedings of the International Conference Constructive Theory of Functions, Sozopol, 2013.
@article{article, author = {Nikolova, Ludmila and Varo\v{s}anec, Sanja}, year = {2014}, pages = {199-215}, keywords = {isotonic linear functional, $h$-concave function, quasilinearity, Chebyshev's functional, Jensen's functional}, isbn = {978-954-322-811-9}, title = {Properties of mappings generated with inequalities for isotonic linear functionals}, keyword = {isotonic linear functional, $h$-concave function, quasilinearity, Chebyshev's functional, Jensen's functional}, publisher = {Prof.Marin Drinov Academic Publ. House}, publisherplace = {Sozopol, Bugarska} }
@article{article, author = {Nikolova, Ludmila and Varo\v{s}anec, Sanja}, year = {2014}, pages = {199-215}, keywords = {isotonic linear functional, $h$-concave function, quasilinearity, Chebyshev's functional, Jensen's functional}, isbn = {978-954-322-811-9}, title = {Properties of mappings generated with inequalities for isotonic linear functionals}, keyword = {isotonic linear functional, $h$-concave function, quasilinearity, Chebyshev's functional, Jensen's functional}, publisher = {Prof.Marin Drinov Academic Publ. House}, publisherplace = {Sozopol, Bugarska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font