Pregled bibliografske jedinice broj: 769476
One-scale H-measures, variants and applications
One-scale H-measures, variants and applications // Book of Abstracts
Linköping, 2015. str. 9-9 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 769476 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
One-scale H-measures, variants and applications
Autori
Antonić, Nenad ; Erceg, Marko ; Lazar, Martin
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Book of Abstracts
/ - Linköping, 2015, 9-9
Skup
PDEs, Potential Theory and Function Spaces
Mjesto i datum
Linköping, Švedska, 14.06.2015. - 18.06.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
H-measures ; localisation principle ; compensated compactness
Sažetak
Microlocal defect functionals (H-measures, H-distributions, semiclassical measures etc.) are objects which determine, in some sense, the lack of strong compactness for weakly convergent L^p sequences. In contrast to the semiclassical measures, H-measures are not suitable to treat problems with a characteristic length (e.g.~thickness of a plate). Luc Tartar in his recent book overcame the mentioned restriction by introducing one-scale H-measures, a generalisation of H-measures with a characteristic length. Moreover, these objects are also an extension of semiclassical measures, being functionals on continuous functions on a compactification of R^d\{; ; ; ; ; 0}; ; ; ; ; . We improve and generalise Tartar's localisation principle for one-scale H-measures from which we are able to derive the known localisation principles for both H-measures and semiclassical measures. Moreover, we develop a variant of compactness by compensation suitable for equations with a characteristic length. Since one-scale H-measures are adequate only for the L^2 framework, we introduce the generalisation, one-scale H-distributions, as a counterpart of H-distributions with a characteristic length, and address some important features.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-9780 - Metode slabih convergencija i primjene (WeConMApp) (Antonić, Nenad, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Sveučilište u Dubrovniku