Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 767908

Visual Diver Detection using Multi-Descriptor Nearest- Class-Mean Random Forests in the Context of Underwater Human Robot Interaction (HRI)


Gomez Chavez, Arturo; Pfingsthorn, Max; Birk, Andreas; Rendulić, Ivor; Mišković, Nikola
Visual Diver Detection using Multi-Descriptor Nearest- Class-Mean Random Forests in the Context of Underwater Human Robot Interaction (HRI) // Proceedings of MTS/IEEE OCEANS'15 Conference
Genova, Italija: Institute of Electrical and Electronics Engineers (IEEE), 2015. str. 1-7 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 767908 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Visual Diver Detection using Multi-Descriptor Nearest- Class-Mean Random Forests in the Context of Underwater Human Robot Interaction (HRI)
(Visual Diver Detection using Multi-Descriptor Nearest-Class-Mean Random Forests in the Context of Underwater Human Robot Interaction (HRI))

Autori
Gomez Chavez, Arturo ; Pfingsthorn, Max ; Birk, Andreas ; Rendulić, Ivor ; Mišković, Nikola

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of MTS/IEEE OCEANS'15 Conference / - : Institute of Electrical and Electronics Engineers (IEEE), 2015, 1-7

Skup
MTS/IEEE OCEANS'15 Conference

Mjesto i datum
Genova, Italija, 18.05.2015. - 21.05.2015

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
human robot interaction ; diver detection ; nearest-class-mean random forrest

Sažetak
This paper introduces a visual method for diver detection in the context of Human Robot Interaction (HRI). The detection is treated as a classification problem, where a discriminative model is trained by computing image features of the target (diver) and underwater scenery. This type of scenery poses great challenges due to its high variability, as it often presents high illumination changes, scarce features and image distortions. For this reason, it is desirable to represent this type of images with multiple type of complementary features. The system scalability is, however, lowered as the number of features types increase as the amount of data to represent queries and indexes also increases. To remedy this, we modified the Nearest Class Mean Forests (NCMF) method, a variant of Random Forests, to integrate as many features types as desired without concerning about scalability and performance decay. The system outperforms the common generative tracking methods which fail to encompass di erent type of distortions into one model and ignore background information. And in contrast to tracking methods using acoustic sensors which output a single value (distance to the diver), our approach outputs a region encompassing the diver’s body ; information that can be further exploited to enhance underwater HRI. Not to mention that camera setups o er higher flexibility in size and energy consumption constraints than acoustic sensors. All of the system’s aforementioned capabilities are tested with real-life data obtained from field experiments.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
036-0362975-2999 - RoboMarSec - Podvodna robotika u zaštiti podmorja i pomorskoj sigurnosti

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Nikola Mišković (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada ieeexplore.ieee.org

Citiraj ovu publikaciju:

Gomez Chavez, Arturo; Pfingsthorn, Max; Birk, Andreas; Rendulić, Ivor; Mišković, Nikola
Visual Diver Detection using Multi-Descriptor Nearest- Class-Mean Random Forests in the Context of Underwater Human Robot Interaction (HRI) // Proceedings of MTS/IEEE OCEANS'15 Conference
Genova, Italija: Institute of Electrical and Electronics Engineers (IEEE), 2015. str. 1-7 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Gomez Chavez, A., Pfingsthorn, M., Birk, A., Rendulić, I. & Mišković, N. (2015) Visual Diver Detection using Multi-Descriptor Nearest- Class-Mean Random Forests in the Context of Underwater Human Robot Interaction (HRI). U: Proceedings of MTS/IEEE OCEANS'15 Conference.
@article{article, author = {Gomez Chavez, Arturo and Pfingsthorn, Max and Birk, Andreas and Renduli\'{c}, Ivor and Mi\v{s}kovi\'{c}, Nikola}, year = {2015}, pages = {1-7}, keywords = {human robot interaction, diver detection, nearest-class-mean random forrest}, title = {Visual Diver Detection using Multi-Descriptor Nearest- Class-Mean Random Forests in the Context of Underwater Human Robot Interaction (HRI)}, keyword = {human robot interaction, diver detection, nearest-class-mean random forrest}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Genova, Italija} }
@article{article, author = {Gomez Chavez, Arturo and Pfingsthorn, Max and Birk, Andreas and Renduli\'{c}, Ivor and Mi\v{s}kovi\'{c}, Nikola}, year = {2015}, pages = {1-7}, keywords = {human robot interaction, diver detection, nearest-class-mean random forrest}, title = {Visual Diver Detection using Multi-Descriptor Nearest-Class-Mean Random Forests in the Context of Underwater Human Robot Interaction (HRI)}, keyword = {human robot interaction, diver detection, nearest-class-mean random forrest}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Genova, Italija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font