Pregled bibliografske jedinice broj: 767884
Modeling and analysis of reactive solute transport in deformable channels with wall adsorption-desorption
Modeling and analysis of reactive solute transport in deformable channels with wall adsorption-desorption // Mathematical methods in the applied sciences, 39 (2016), 7; 1780-1802 doi:10.1002/mma.3601 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 767884 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Modeling and analysis of reactive solute transport in deformable channels with wall adsorption-desorption
Autori
Mabuza, Sibusiso ; Čanić, Sunčica ; Muha, Boris
Izvornik
Mathematical methods in the applied sciences (0170-4214) 39
(2016), 7;
1780-1802
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Adsorption-Desorption ; Convection-Diffusion ; Reactive Solute Transport ; Weak Solutions ; Positive Weak Solution
Sažetak
We show well-posedness for a model of nonlinear reactive transport of chemical in a deformable channel. The channel walls deform due to fluid- structure interaction between an unsteady flow of an incompressible, viscous fluid inside the channel, and elastic channel walls. Chemical solutes, which are dissolved in the viscous, incompressible fluid, satisfy a convection- diffusion equation in the bulk fluid, while on the deforming walls, the solutes undergo nonlinear adsorption-desorption physico- chemical reactions. The problem addresses scenarios that arise, e.g., in studies of drug transport in blood vessels. We show the existence of a unique weak solution with solute concentrations that are non-negative for all times. The analysis of the problem is done in the context of semi-linear parabolic PDEs on moving domains. The Arbitrary Lagrangian- Eulerian approach is used to address the domain movement, and the Galerkin method with the Picard-Lindel\" {; ; ; ; ; o}; ; ; ; ; f theorem is used to prove existence and uniqueness of approximate solutions. Energy estimates combined with the compactness arguments based on the Aubin-Lions lemma, are used to prove convergence of the approximating sequences to the unique weak solution of the problem. It is shown that the solution satisfies the positivity property, i.e., that the density of the solute remains non-negative at all times, as long as the prescribed fluid domain motion is ``reasonable''. This is the first well- posedness result for reactive transport problems defined on moving domains of this type.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-UIP-2013-11-9477 - MAtematička analiza multifizikalnih problema koji uključuju tanke i kompozitne strukture i fluide (MAMPITCoStruFl) (Velčić, Igor, HRZZ ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi onlinelibrary.wiley.com doi.orgCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus