Pregled bibliografske jedinice broj: 766683
Robust Traffic Scene Recognition with a Limited Descriptor Length
Robust Traffic Scene Recognition with a Limited Descriptor Length // CVPR 2015 Workshop on Visual Place Recognition in Changing Environments / Suenderhauf, N. (ur.).
Boston (MA), Sjedinjene Američke Države, 2015. str. 1-9 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 766683 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Robust Traffic Scene Recognition with a Limited Descriptor Length
Autori
Sikirić, Ivan ; Brkić, Karla ; Krapac, Josip ; Šegvić, Siniša
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
CVPR 2015 Workshop on Visual Place Recognition in Changing Environments
/ Suenderhauf, N. - , 2015, 1-9
Skup
CVPR 2015 Workshop on Visual Place Recognition in Changing Environments
Mjesto i datum
Boston (MA), Sjedinjene Američke Države, 11.06.2015
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
scene classification; short image descriptors; GIST; spatial Fisher vectors
Sažetak
In this paper we describe a novel image descriptor designed for classification of traffic scene images in fleet management systems. The descriptor is computationally simple and very compact (as short as 48 bytes). It is derived from variations of two well known image descriptors: GIST and spatial Fisher vectors, thus encoding both global and local image features. Both GIST (being a global scene descriptor) and spatial Fisher vectors (that relies on local image features) are tuned to produce very short outputs (64 components), which are then concatenated. The output is further compressed by a lossy encoding scheme, without sacrificing classification performance. The encoding scheme uses as little as 3 bits to encode each vector component. The descriptor is evaluated on the publicly available FM2 dataset of traffic scene images. We demonstrate very good classification performance matching that of full-sized general purpose image descriptors.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb