Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 766683

Robust Traffic Scene Recognition with a Limited Descriptor Length


Sikirić, Ivan; Brkić, Karla; Krapac, Josip; Šegvić, Siniša
Robust Traffic Scene Recognition with a Limited Descriptor Length // CVPR 2015 Workshop on Visual Place Recognition in Changing Environments / Suenderhauf, N. (ur.).
Boston (MA), Sjedinjene Američke Države, 2015. str. 1-9 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 766683 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Robust Traffic Scene Recognition with a Limited Descriptor Length

Autori
Sikirić, Ivan ; Brkić, Karla ; Krapac, Josip ; Šegvić, Siniša

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
CVPR 2015 Workshop on Visual Place Recognition in Changing Environments / Suenderhauf, N. - , 2015, 1-9

Skup
CVPR 2015 Workshop on Visual Place Recognition in Changing Environments

Mjesto i datum
Boston (MA), Sjedinjene Američke Države, 11.06.2015

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
scene classification; short image descriptors; GIST; spatial Fisher vectors

Sažetak
In this paper we describe a novel image descriptor designed for classification of traffic scene images in fleet management systems. The descriptor is computationally simple and very compact (as short as 48 bytes). It is derived from variations of two well known image descriptors: GIST and spatial Fisher vectors, thus encoding both global and local image features. Both GIST (being a global scene descriptor) and spatial Fisher vectors (that relies on local image features) are tuned to produce very short outputs (64 components), which are then concatenated. The output is further compressed by a lossy encoding scheme, without sacrificing classification performance. The encoding scheme uses as little as 3 bits to encode each vector component. The descriptor is evaluated on the publicly available FM2 dataset of traffic scene images. We demonstrate very good classification performance matching that of full-sized general purpose image descriptors.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Josip Krapac (autor)

Avatar Url Karla Brkić (autor)

Avatar Url Siniša Šegvić (autor)

Citiraj ovu publikaciju:

Sikirić, Ivan; Brkić, Karla; Krapac, Josip; Šegvić, Siniša
Robust Traffic Scene Recognition with a Limited Descriptor Length // CVPR 2015 Workshop on Visual Place Recognition in Changing Environments / Suenderhauf, N. (ur.).
Boston (MA), Sjedinjene Američke Države, 2015. str. 1-9 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Sikirić, I., Brkić, K., Krapac, J. & Šegvić, S. (2015) Robust Traffic Scene Recognition with a Limited Descriptor Length. U: Suenderhauf, N. (ur.)CVPR 2015 Workshop on Visual Place Recognition in Changing Environments.
@article{article, author = {Sikiri\'{c}, Ivan and Brki\'{c}, Karla and Krapac, Josip and \v{S}egvi\'{c}, Sini\v{s}a}, editor = {Suenderhauf, N.}, year = {2015}, pages = {1-9}, keywords = {scene classification, short image descriptors, GIST, spatial Fisher vectors}, title = {Robust Traffic Scene Recognition with a Limited Descriptor Length}, keyword = {scene classification, short image descriptors, GIST, spatial Fisher vectors}, publisherplace = {Boston (MA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Sikiri\'{c}, Ivan and Brki\'{c}, Karla and Krapac, Josip and \v{S}egvi\'{c}, Sini\v{s}a}, editor = {Suenderhauf, N.}, year = {2015}, pages = {1-9}, keywords = {scene classification, short image descriptors, GIST, spatial Fisher vectors}, title = {Robust Traffic Scene Recognition with a Limited Descriptor Length}, keyword = {scene classification, short image descriptors, GIST, spatial Fisher vectors}, publisherplace = {Boston (MA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }




Contrast
Increase Font
Decrease Font
Dyslexic Font