Pregled bibliografske jedinice broj: 763109
Using String Similarity Metrics for Automated Grading of SQL Statements
Using String Similarity Metrics for Automated Grading of SQL Statements // Proceedings of MIPRO CIS - Intelligent Systems Conference, 2015 / Biljanović, Petar (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2015. str. 1497-1502 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 763109 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Using String Similarity Metrics for Automated Grading of SQL Statements
Autori
Štajduhar, Ivan ; Mauša, Goran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of MIPRO CIS - Intelligent Systems Conference, 2015
/ Biljanović, Petar - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2015, 1497-1502
ISBN
978-953-233-083-0
Skup
38th International Convention MIPRO 2015
Mjesto i datum
Opatija, Hrvatska, 25.05.2015. - 29.05.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Machine Learning; String Metric; SQL; Automated Grading
Sažetak
Manual grading of structured query language (SQL) statements after an exam can be tedious and time consuming for the teaching assistant. Additionally, it can also be subjective to her current state of mind and, thus, prone to errors. In this paper we propose an automated method for grading individual SQL statements. The method uses several common and simple string similarity metrics for comparing the student devised statements against the reference statements. These are then used, along with the manually assigned grades, for building the predictive logistic regression model. The proposed method was evaluated on a dataset consisting of 314 pairs of studentreference statements, along with the discretized average grade assigned by three independent evaluators. The model achieved the expected classification accuracy of 78% on a binary class, thus exhibiting its potential for real-life application. The model can be used as is with the suggested calculated features and reported learnt parameters, or adapted to other examiners' evaluation criteria, presuming their willingness to build manually graded datasets of their own.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Tehnički fakultet, Rijeka