Pregled bibliografske jedinice broj: 761207
The relation between pentagonal and GS-quasigroups
The relation between pentagonal and GS-quasigroups // The 4th Novi Sad Algebraic Conference & Semigroups and Applications 2013
Novi Sad, Srbija, 2013. (predavanje, međunarodna recenzija, neobjavljeni rad, znanstveni)
CROSBI ID: 761207 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The relation between pentagonal and GS-quasigroups
Autori
Vidak, Stipe
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
The 4th Novi Sad Algebraic Conference & Semigroups and Applications 2013
Mjesto i datum
Novi Sad, Srbija, 05.06.2013. - 09.06.2013
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
IM-quasigroup; pentagonal quasigroup; GS-quasigroup; GS-trapezium; affine regular pentagon
Sažetak
Pentagonal quasigroups are idempotent medial quasigroups in which identity (ab · a)b · a = b holds. GS-quasigroups are idempotent medial quasigroups in which one of the mutually equivalent identities a(ab · c) · c = b, a · (a · bc)c = b hold. We show that in every pentagonal quasigroup we can define GS-quasigroup. Using that we define geometric concepts of GS- trapezium and affine regular pentagon in pentagonal quasigroups, concepts already defined and studied in GSquasigroups. Consequently, pentagonal quasigroups inherit the entire geometry of GS-quasigroups. Geometric representations of some theorems regarding mentioned concepts are given in the quasigroup C(q), where q is a solution of the equation q 4 − 3q 3 + 4q 2 − 2q + 1 = 0.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Stipe Vidak
(autor)