Pregled bibliografske jedinice broj: 761203
Geometry of pentagonal quasigroups
Geometry of pentagonal quasigroups // 5th Croatian Mathematical Congress
Rijeka, Hrvatska, 2012. (predavanje, međunarodna recenzija, neobjavljeni rad, znanstveni)
CROSBI ID: 761203 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Geometry of pentagonal quasigroups
Autori
Vidak, Stipe
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
5th Croatian Mathematical Congress
Mjesto i datum
Rijeka, Hrvatska, 18.06.2012. - 21.06.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
medial quasigroup; parallelogram; midpoint; regular pentagon; regular decagon
Sažetak
Pentagonal quasigroups are idempotent medial quasigroups satisfying the additional identity of pentagonality, (ab · a)b · a = b. Basic example is C(q) = (C, ∗), where ∗ is binary operation on C defined by a ∗ b = (1 − q)a + qb for a, b ∈ C, and q is a solution of the equation q 4 −3q 3 + 4q 2 −2q + 1 = 0. Using this example as motivation, some geometrical concepts, such as parallelogram, midpoint of a segment, regular pentagon and regular decagon, are defined in a general pentagonal quasigroup. These concepts and their mutual relations are studied and presented in C(q) and in some finite pentagonal quasigroups of order 5 and 11. Using only algebraic identities which hold in pentagonal quasigroups many generalizations of theorems of the Euclidean plane can be proved in a general pentagonal quasigroup.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Stipe Vidak
(autor)