Pregled bibliografske jedinice broj: 758640
Stochastic Inversion of Two-Layer Soil Model Parameters from Electromagnetic Induction Data
Stochastic Inversion of Two-Layer Soil Model Parameters from Electromagnetic Induction Data // Proceedings of the 2015 IEEE Sensors Applications Symposium, IEEE SAS 2015 / Bilas, Vedran ; Flammini, Alessandra (ur.).
Piscataway (NJ): Institute of Electrical and Electronics Engineers (IEEE), 2015. str. 210-214 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 758640 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Stochastic Inversion of Two-Layer Soil Model Parameters from Electromagnetic Induction Data
Autori
Vasić, Darko ; Ambruš, Davorin ; Bilas, Vedran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2015 IEEE Sensors Applications Symposium, IEEE SAS 2015
/ Bilas, Vedran ; Flammini, Alessandra - Piscataway (NJ) : Institute of Electrical and Electronics Engineers (IEEE), 2015, 210-214
ISBN
978-1-4799-6116-0
Skup
2015 IEEE Sensors Applications Symposium, IEEE SAS 2015
Mjesto i datum
Zadar, Hrvatska, 13.04.2015. - 15.04.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
induction sensor; soil conductivity; soil susceptibility; inverse problem; Markov chains; Monte Carlo methods
Sažetak
Soil electrical conductivity and magnetic susceptibility are connected to a number of soil properties such as water content, salinity and clay content. Electromagnetic induction (EMI) sensors for geoelectric characterization and mapping of upper soil layers typically consist of a transmitter and several spatially distributed receiver coils. In this paper, we develop a stochastic approach to the inverse problem of determination of electrical conductivity and magnetic susceptibility of two-layered soil, and thickness of its upper layer. As a forward model, we use an analytical truncated-region EMI model with one transmitter and several receiver coils placed horizontally above the soil. For solving the stochastic inversion problem we employ Markov Chain Monte Carlo (MCMC) approach. We illustrate the application of the inversion procedure on a synthetic single-frequency data set obtained from the model of an EMI sensor. Furthermore, we investigate the measurement uncertainty requirements for the sensor. The model and the stochastic inversion approach are suitable for design of EMI sensors and off-line analysis of the EMI data.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb