Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 752030

Uniform Boundedness and Long-Time Asymptotics for the Two-Dimensional Navier–Stokes Equations in an Infinite Cylinder


Gallay, Thierry; Slijepčević, Siniša
Uniform Boundedness and Long-Time Asymptotics for the Two-Dimensional Navier–Stokes Equations in an Infinite Cylinder // Journal of mathematical fluid mechanics, 17 (2015), 1; 23-46 doi:10.1007/s00021-014-0188-z (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 752030 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Uniform Boundedness and Long-Time Asymptotics for the Two-Dimensional Navier–Stokes Equations in an Infinite Cylinder

Autori
Gallay, Thierry ; Slijepčević, Siniša

Izvornik
Journal of mathematical fluid mechanics (1422-6928) 17 (2015), 1; 23-46

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Navier–Stokes equations; global existence; uniform bounds; long-time behavior

Sažetak
The incompressible Navier–Stokes equations are considered in the two-dimensional strip TeX, with periodic boundary conditions and no exterior forcing. If the initial velocity is bounded, it is shown that the solution remains uniformly bounded for all time, and that the vorticity distribution converges to zero as TeX. This implies, after a transient period, the emergence of a laminar regime in which the solution rapidly converges to a shear flow described by the one-dimensional heat equation in an appropriate Galilean frame. The approach is constructive and provides explicit estimates on the size of the solution and the lifetime of the turbulent period in terms of the initial Reynolds number.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Siniša Slijepčević (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com link.springer.com

Citiraj ovu publikaciju:

Gallay, Thierry; Slijepčević, Siniša
Uniform Boundedness and Long-Time Asymptotics for the Two-Dimensional Navier–Stokes Equations in an Infinite Cylinder // Journal of mathematical fluid mechanics, 17 (2015), 1; 23-46 doi:10.1007/s00021-014-0188-z (međunarodna recenzija, članak, znanstveni)
Gallay, T. & Slijepčević, S. (2015) Uniform Boundedness and Long-Time Asymptotics for the Two-Dimensional Navier–Stokes Equations in an Infinite Cylinder. Journal of mathematical fluid mechanics, 17 (1), 23-46 doi:10.1007/s00021-014-0188-z.
@article{article, author = {Gallay, Thierry and Slijep\v{c}evi\'{c}, Sini\v{s}a}, year = {2015}, pages = {23-46}, DOI = {10.1007/s00021-014-0188-z}, keywords = {Navier–Stokes equations, global existence, uniform bounds, long-time behavior}, journal = {Journal of mathematical fluid mechanics}, doi = {10.1007/s00021-014-0188-z}, volume = {17}, number = {1}, issn = {1422-6928}, title = {Uniform Boundedness and Long-Time Asymptotics for the Two-Dimensional Navier–Stokes Equations in an Infinite Cylinder}, keyword = {Navier–Stokes equations, global existence, uniform bounds, long-time behavior} }
@article{article, author = {Gallay, Thierry and Slijep\v{c}evi\'{c}, Sini\v{s}a}, year = {2015}, pages = {23-46}, DOI = {10.1007/s00021-014-0188-z}, keywords = {Navier–Stokes equations, global existence, uniform bounds, long-time behavior}, journal = {Journal of mathematical fluid mechanics}, doi = {10.1007/s00021-014-0188-z}, volume = {17}, number = {1}, issn = {1422-6928}, title = {Uniform Boundedness and Long-Time Asymptotics for the Two-Dimensional Navier–Stokes Equations in an Infinite Cylinder}, keyword = {Navier–Stokes equations, global existence, uniform bounds, long-time behavior} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font