Pregled bibliografske jedinice broj: 748166
A Nonlinear Mixture Model Based Unsupervised Variable Selection in Genomics and Proteomics
A Nonlinear Mixture Model Based Unsupervised Variable Selection in Genomics and Proteomics // Bioinformatics 2015 6th International Conference on Bioinformatics Models, Methods and Algorithms / Gamboa, Hugo ; Fred, Ana ; Elias Dirk ; Pastor, Oscar ; Sinoquet, Christine (ur.).
Lisabon: SCITEPRESS, 2015. str. 85-92 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 748166 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Nonlinear Mixture Model Based Unsupervised Variable Selection in Genomics and Proteomics
Autori
Kopriva, Ivica
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Bioinformatics 2015 6th International Conference on Bioinformatics Models, Methods and Algorithms
/ Gamboa, Hugo ; Fred, Ana ; Elias Dirk ; Pastor, Oscar ; Sinoquet, Christine - Lisabon : SCITEPRESS, 2015, 85-92
ISBN
978-989-758-070-3
Skup
Bioinformatics 2015 6th International Conference on Bioinformatics Models, Methods and Algorithms
Mjesto i datum
Lisabon, Portugal, 12.01.2015. - 15.01.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
variable selection; nonlinear mixture models; explicit feature maps; sparse component analysis
Sažetak
Typical scenarios occurring in genomics and proteomics involve small number of samples and large number of variables. Thus, variable selection is necessary for creating disease prediction models robust to overfitting. We propose an unsupervised variable selection method based on sparseness constrained decomposition of a sample. Decomposition is based on nonlinear mixture model comprised of test sample and a reference sample representing negative (healthy) class. Geometry of the model enables automatic selection of component comprised of disease related variables. Proposed unsupervised variable selection method is compared with 3 supervised and 1 unsupervised variable selection methods on two-class problems using 3 genomic and 2 proteomic data sets. Obtained results suggest that proposed method could perform better than supervised methods on unseen data of the same cancer type.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Biologija, Računarstvo
POVEZANOST RADA