Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 743577

Automated fault detection method in process data based on cluster analysis


Belić, Filip; Hocenski, Željko
Automated fault detection method in process data based on cluster analysis // USB Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics / Kaynak, Okyay (ur.).
Istanbul: IEEE Industrial Electronics Society, Bogazicy University, Turkey, 2014. str. 2412-2417 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 743577 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Automated fault detection method in process data based on cluster analysis

Autori
Belić, Filip ; Hocenski, Željko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
USB Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics / Kaynak, Okyay - Istanbul : IEEE Industrial Electronics Society, Bogazicy University, Turkey, 2014, 2412-2417

ISBN
978-1-4799-2398-4

Skup
2014 IEEE 23rd International Symposium on Industrial Electronics

Mjesto i datum
Istanbul, Turska, 01.06.2014. - 04.06.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
process data ; fault detection ; cluster analysis ; application ; evaluation

Sažetak
This article presents a method for detecting changes in behavior of data. It is based on cluster analysis, which is a common name for methods that group data in segments called clusters, based on similarities and differences of data itself, without supervision of human observer. The data analyzed by clustering techniques are commonly met in process industry: locally constant process values with a lot of noise and sudden changes to completely different values. The experimental application was developed for evaluation of proposed method and gained results prove its quality for several data patterns. This method can be used for automated fault detection applied to industrial process data when data errors are more complex than simple breaching of data limits or minimum and maximum.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
165-0361621-2000 - Distribuirano računalno upravljanje u transportu i industrijskim pogonima (Hocenski, Željko, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Filip Belić (autor)

Avatar Url Željko Hocenski (autor)


Citiraj ovu publikaciju:

Belić, Filip; Hocenski, Željko
Automated fault detection method in process data based on cluster analysis // USB Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics / Kaynak, Okyay (ur.).
Istanbul: IEEE Industrial Electronics Society, Bogazicy University, Turkey, 2014. str. 2412-2417 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Belić, F. & Hocenski, Ž. (2014) Automated fault detection method in process data based on cluster analysis. U: Kaynak, O. (ur.)USB Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics.
@article{article, author = {Beli\'{c}, Filip and Hocenski, \v{Z}eljko}, editor = {Kaynak, O.}, year = {2014}, pages = {2412-2417}, keywords = {process data, fault detection, cluster analysis, application, evaluation}, isbn = {978-1-4799-2398-4}, title = {Automated fault detection method in process data based on cluster analysis}, keyword = {process data, fault detection, cluster analysis, application, evaluation}, publisher = {IEEE Industrial Electronics Society, Bogazicy University, Turkey}, publisherplace = {Istanbul, Turska} }
@article{article, author = {Beli\'{c}, Filip and Hocenski, \v{Z}eljko}, editor = {Kaynak, O.}, year = {2014}, pages = {2412-2417}, keywords = {process data, fault detection, cluster analysis, application, evaluation}, isbn = {978-1-4799-2398-4}, title = {Automated fault detection method in process data based on cluster analysis}, keyword = {process data, fault detection, cluster analysis, application, evaluation}, publisher = {IEEE Industrial Electronics Society, Bogazicy University, Turkey}, publisherplace = {Istanbul, Turska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font