Pregled bibliografske jedinice broj: 743516
Polarized Partitions and Partitions with d-distant Parts
Polarized Partitions and Partitions with d-distant Parts // 5th Polish Combinatorial Conference, Book of Abstracts
Będlewo, Poljska, 2014. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 743516 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Polarized Partitions and Partitions with d-distant Parts
Autori
Martinjak, Ivica
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
5th Polish Combinatorial Conference, Book of Abstracts
/ - , 2014
Skup
5th Polish Combinatorial Conference
Mjesto i datum
Będlewo, Poljska, 22.11.2014. - 26.11.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
partition identity ; direct bijection ; polarized partition ; Bressoud bijection
Sažetak
A partition with d-distant parts is the sequence \lambda=(\lambda_1, \lambda_2, ..., \lambda_l) with the constraint \lambda_i-\lambda_{; ; ; i+1}; ; ; \ge d. These partitions are generalization of partitions of Rogers-Ramanujan type. Partitions with 1-distant parts and with the property that the minimal even part is greater than double number of odd parts we call polarized. It is known that the number of polarized partitions \lambda \vdash n is equal to the number of partitions with 2-distant parts, as a specialization of a more general bijection (Bressoud, 1978). We prove that the number of partitions \lambda \vdash n with d-distant parts is equal to the number of polarized partitions \mu_i \vdash n-(d-2){; ; ; i \choose 2}; ; ; , with length equal to i, i \ge 1. As a consequence of this result, the number of partitions with d-distant parts is represented as the number of partitions of Rogers-Ramanujan type. Joint work with Dragutin Svrtan.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Ivica Martinjak
(autor)