Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 741385

Non-stationary Friedrichs systems


Burazin, Krešimir; Erceg, Marko
Non-stationary Friedrichs systems // PDEs, Continuum Mechanics and Numerical Analysis - abstracts / Tambača, Josip i dr. (ur.).
Zagreb, 2014. str. 16-16 (predavanje, nije recenziran, sažetak, ostalo)


CROSBI ID: 741385 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Non-stationary Friedrichs systems

Autori
Burazin, Krešimir ; Erceg, Marko

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, ostalo

Izvornik
PDEs, Continuum Mechanics and Numerical Analysis - abstracts / Tambača, Josip i dr. - Zagreb, 2014, 16-16

Skup
PDEs, Continuum Mechanics and Numerical Analysis - A Conference in Honor of the 80th Anniversary of professor Ibrahim Aganović

Mjesto i datum
Dubrovnik, Hrvatska, 26.05.2014. - 30.05.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Nije recenziran

Ključne riječi
Friedrichs systems

Sažetak
Symmetric positive systems (Friedrichs systems) of first-order linear partial differential equations were introduced by Kurt Otto Friedrichs (1958) in order to treat the equations that change their type, like the equations modelling transonic fluid flow. More recently, Ern, Guermond and Caplain (CPDE, 2007) expressed the theory in terms of operators acting in abstract Hilbert spaces and proved wellposedness result in this abstract setting. Although their setting can be used to represent various boundary value problems for (partial) differential equations, some evolution (non-stationary) problems, such as the initial-boundary value problem for the non-stationary Maxwell system, or the Cauchy problem for the symmetric hyperbolic system, can not be treated within their framework. We develop an abstract theory for non-stationary Friedrichs systems that can address these problems as well. More precisely, we consider an abstract Cauchy problem in a Hilbert space, that involves a time independent abstract Friedrichs operator. We use the semigroup theory approach, and prove that the operator involved satisfies conditions of the Hille-Yosida generation theorem. We also address the semilinear problem and apply new results to symmetric hyperbolic systems, the unsteady Maxwell system, the unsteady div-grad problem, and the wave equation. The theory can be extended to the complex Banach space setting, with application to the Dirac system. This is a joint work with Marko Erceg (University of Zagreb).

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
037-0372787-2795 - Titrajuća rješenja parcijalnih diferencijalnih jednadžbi (Antonić, Nenad, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Krešimir Burazin (autor)

Avatar Url Marko Erceg (autor)


Citiraj ovu publikaciju:

Burazin, Krešimir; Erceg, Marko
Non-stationary Friedrichs systems // PDEs, Continuum Mechanics and Numerical Analysis - abstracts / Tambača, Josip i dr. (ur.).
Zagreb, 2014. str. 16-16 (predavanje, nije recenziran, sažetak, ostalo)
Burazin, K. & Erceg, M. (2014) Non-stationary Friedrichs systems. U: Tambača, J. (ur.)PDEs, Continuum Mechanics and Numerical Analysis - abstracts.
@article{article, author = {Burazin, Kre\v{s}imir and Erceg, Marko}, editor = {Tamba\v{c}a, J.}, year = {2014}, pages = {16-16}, keywords = {Friedrichs systems}, title = {Non-stationary Friedrichs systems}, keyword = {Friedrichs systems}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {Burazin, Kre\v{s}imir and Erceg, Marko}, editor = {Tamba\v{c}a, J.}, year = {2014}, pages = {16-16}, keywords = {Friedrichs systems}, title = {Non-stationary Friedrichs systems}, keyword = {Friedrichs systems}, publisherplace = {Dubrovnik, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font