Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 738985

An indefinite variant of LOBPCG for definite matrix pencils


Kressner, Daniel; Miloloža Pandur, Marija; Shao, Meiyue
An indefinite variant of LOBPCG for definite matrix pencils // Numerical algorithms, 66 (2014), 4; 681-703 doi:10.1007/s11075-013-9754-3 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 738985 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
An indefinite variant of LOBPCG for definite matrix pencils

Autori
Kressner, Daniel ; Miloloža Pandur, Marija ; Shao, Meiyue

Izvornik
Numerical algorithms (1017-1398) 66 (2014), 4; 681-703

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
eigenvalue; definite matrix pencil; minimization principle; LOBPCG

Sažetak
In this paper, we propose a novel preconditioned solver for generalized Hermitian eigenvalue problems. More specifically, we address the case of a definite matrix pencil A−λB , that is, A, B are Hermitian and there is a shift λ_0 such that A−λ_0 B is definite. Our new method can be seen as a variant of the popular LOBPCG method operating in an indefinite inner product. It also turns out to be a generalization of the recently proposed LOBP4DCG method by Bai and Li for solving product eigenvalue problems. Several numerical experiments demonstrate the effectiveness of our method for addressing certain product and quadratic eigenvalue problems.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Sveučilište u Osijeku, Odjel za matematiku

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Kressner, Daniel; Miloloža Pandur, Marija; Shao, Meiyue
An indefinite variant of LOBPCG for definite matrix pencils // Numerical algorithms, 66 (2014), 4; 681-703 doi:10.1007/s11075-013-9754-3 (međunarodna recenzija, članak, znanstveni)
Kressner, D., Miloloža Pandur, M. & Shao, M. (2014) An indefinite variant of LOBPCG for definite matrix pencils. Numerical algorithms, 66 (4), 681-703 doi:10.1007/s11075-013-9754-3.
@article{article, author = {Kressner, Daniel and Milolo\v{z}a Pandur, Marija and Shao, Meiyue}, year = {2014}, pages = {681-703}, DOI = {10.1007/s11075-013-9754-3}, keywords = {eigenvalue, definite matrix pencil, minimization principle, LOBPCG}, journal = {Numerical algorithms}, doi = {10.1007/s11075-013-9754-3}, volume = {66}, number = {4}, issn = {1017-1398}, title = {An indefinite variant of LOBPCG for definite matrix pencils}, keyword = {eigenvalue, definite matrix pencil, minimization principle, LOBPCG} }
@article{article, author = {Kressner, Daniel and Milolo\v{z}a Pandur, Marija and Shao, Meiyue}, year = {2014}, pages = {681-703}, DOI = {10.1007/s11075-013-9754-3}, keywords = {eigenvalue, definite matrix pencil, minimization principle, LOBPCG}, journal = {Numerical algorithms}, doi = {10.1007/s11075-013-9754-3}, volume = {66}, number = {4}, issn = {1017-1398}, title = {An indefinite variant of LOBPCG for definite matrix pencils}, keyword = {eigenvalue, definite matrix pencil, minimization principle, LOBPCG} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font