Pregled bibliografske jedinice broj: 735133
Machine Learning Approaches to Maritime Anomaly Detection
Machine Learning Approaches to Maritime Anomaly Detection // Naše more : znanstveni časopis za more i pomorstvo, 61 (2014), 5-6; 96-101 (međunarodna recenzija, pregledni rad, znanstveni)
CROSBI ID: 735133 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine Learning Approaches to Maritime Anomaly Detection
Autori
Obradović, Ines ; Miličević, Mario ; Žubrinić, Krunoslav
Izvornik
Naše more : znanstveni časopis za more i pomorstvo (0469-6255) 61
(2014), 5-6;
96-101
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, pregledni rad, znanstveni
Ključne riječi
maritime traffic ; anomaly detection ; situational awareness ; machine learning ; AIS
Sažetak
Topics related to safety in maritime transport have become very important over the past decades due to numerous maritime problems putting both human lives and the environment in danger. Recent advances in surveillance technology and the need for better sea traffic protection led to development of automated solutions for detecting anomalies. These solutions are based on generating normality models from data gathered on vessel movement, mostly from AIS. This paper provides a presentation of various machine learning approaches for anomaly detection in the maritime domain. It also addresses potential problems and challenges that could get in the way of successful automation of such systems.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Tehnologija prometa i transport
POVEZANOST RADA
Ustanove:
Sveučilište u Dubrovniku
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Compendex (EI Village)
- Geobase
- INSPEC
- Scopus,