Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 735133

Machine Learning Approaches to Maritime Anomaly Detection


Obradović, Ines; Miličević, Mario; Žubrinić, Krunoslav
Machine Learning Approaches to Maritime Anomaly Detection // Naše more : znanstveni časopis za more i pomorstvo, 61 (2014), 5-6; 96-101 (međunarodna recenzija, pregledni rad, znanstveni)


CROSBI ID: 735133 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Machine Learning Approaches to Maritime Anomaly Detection

Autori
Obradović, Ines ; Miličević, Mario ; Žubrinić, Krunoslav

Izvornik
Naše more : znanstveni časopis za more i pomorstvo (0469-6255) 61 (2014), 5-6; 96-101

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, pregledni rad, znanstveni

Ključne riječi
maritime traffic ; anomaly detection ; situational awareness ; machine learning ; AIS

Sažetak
Topics related to safety in maritime transport have become very important over the past decades due to numerous maritime problems putting both human lives and the environment in danger. Recent advances in surveillance technology and the need for better sea traffic protection led to development of automated solutions for detecting anomalies. These solutions are based on generating normality models from data gathered on vessel movement, mostly from AIS. This paper provides a presentation of various machine learning approaches for anomaly detection in the maritime domain. It also addresses potential problems and challenges that could get in the way of successful automation of such systems.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Tehnologija prometa i transport



POVEZANOST RADA


Ustanove:
Sveučilište u Dubrovniku

Profili:

Avatar Url Krunoslav Žubrinić (autor)

Avatar Url Mario Miličević (autor)

Poveznice na cjeloviti tekst rada:

Hrčak www.nasemore.com

Citiraj ovu publikaciju:

Obradović, Ines; Miličević, Mario; Žubrinić, Krunoslav
Machine Learning Approaches to Maritime Anomaly Detection // Naše more : znanstveni časopis za more i pomorstvo, 61 (2014), 5-6; 96-101 (međunarodna recenzija, pregledni rad, znanstveni)
Obradović, I., Miličević, M. & Žubrinić, K. (2014) Machine Learning Approaches to Maritime Anomaly Detection. Naše more : znanstveni časopis za more i pomorstvo, 61 (5-6), 96-101.
@article{article, author = {Obradovi\'{c}, Ines and Mili\v{c}evi\'{c}, Mario and \v{Z}ubrini\'{c}, Krunoslav}, year = {2014}, pages = {96-101}, keywords = {maritime traffic, anomaly detection, situational awareness, machine learning, AIS}, journal = {Na\v{s}e more : znanstveni \v{c}asopis za more i pomorstvo}, volume = {61}, number = {5-6}, issn = {0469-6255}, title = {Machine Learning Approaches to Maritime Anomaly Detection}, keyword = {maritime traffic, anomaly detection, situational awareness, machine learning, AIS} }
@article{article, author = {Obradovi\'{c}, Ines and Mili\v{c}evi\'{c}, Mario and \v{Z}ubrini\'{c}, Krunoslav}, year = {2014}, pages = {96-101}, keywords = {maritime traffic, anomaly detection, situational awareness, machine learning, AIS}, journal = {Na\v{s}e more : znanstveni \v{c}asopis za more i pomorstvo}, volume = {61}, number = {5-6}, issn = {0469-6255}, title = {Machine Learning Approaches to Maritime Anomaly Detection}, keyword = {maritime traffic, anomaly detection, situational awareness, machine learning, AIS} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Compendex (EI Village)
  • Geobase
  • INSPEC
  • Scopus,





Contrast
Increase Font
Decrease Font
Dyslexic Font