Pregled bibliografske jedinice broj: 73173
Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations
Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations // Journal of Computational and Applied Mathematics, 3 (2002), 1-22 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 73173 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations
Autori
Horvat, Vilmoš ; Rogina, Mladen
Izvornik
Journal of Computational and Applied Mathematics (0377-0427) 3
(2002);
1-22
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Singularly perturbed Volterra integro-differential equations; Volterra integral equations; Tension spline; Collocation method
Sažetak
We consider a discretization of the singularly perturbed Volterra integro-differential equations (VIDE) \begin{; ; eqnarray}; ; \label{; ; 1.1}; ; \varepsilon y'(t) &=& q(t)-p(t)y(t)+\int^t_0 K(t, s)y(s)ds \quad t \in I:=[0, T]\\ \nonumber y(0) &=& y_0, \end{; ; eqnarray}; ; and Volterra integral equations (VIE) \begin{; ; eqnarray}; ; \label{; ; 1.2}; ; \varepsilon y(t) &=& g(t)-\int^t_0 K(t, s)y(s)ds \quad t \in I:=[0, T], \end{; ; eqnarray}; ; by spline collocation methods in tension spline spaces, where $\varepsilon$ is a small parameter satisfying $0<\varepsilon \ll 1$, and $q, $ $p, $ $g, $ and $K$ are sufficiently smooth for the equations (\ref{; ; 1.1}; ; ) and (\ref{; ; 1.2}; ; ) to possess a unique solution. We construct the appropriate finite dimensional spaces of powers in tension, consider the numerical difficulties in this construction, and then proceed to an analysis of the global convergence properties of the collocation solution. The existing theory for $\varepsilon = 1$ is extended to the singularly perturbed case, and the numerical examples support the theoretical results.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037114
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews