Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 73173

Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations


Horvat, Vilmoš; Rogina, Mladen
Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations // Journal of Computational and Applied Mathematics, 3 (2002), 1-22 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 73173 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations

Autori
Horvat, Vilmoš ; Rogina, Mladen

Izvornik
Journal of Computational and Applied Mathematics (0377-0427) 3 (2002); 1-22

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Singularly perturbed Volterra integro-differential equations; Volterra integral equations; Tension spline; Collocation method

Sažetak
We consider a discretization of the singularly perturbed Volterra integro-differential equations (VIDE) \begin{; ; eqnarray}; ; \label{; ; 1.1}; ; \varepsilon y'(t) &=& q(t)-p(t)y(t)+\int^t_0 K(t, s)y(s)ds \quad t \in I:=[0, T]\\ \nonumber y(0) &=& y_0, \end{; ; eqnarray}; ; and Volterra integral equations (VIE) \begin{; ; eqnarray}; ; \label{; ; 1.2}; ; \varepsilon y(t) &=& g(t)-\int^t_0 K(t, s)y(s)ds \quad t \in I:=[0, T], \end{; ; eqnarray}; ; by spline collocation methods in tension spline spaces, where $\varepsilon$ is a small parameter satisfying $0<\varepsilon \ll 1$, and $q, $ $p, $ $g, $ and $K$ are sufficiently smooth for the equations (\ref{; ; 1.1}; ; ) and (\ref{; ; 1.2}; ; ) to possess a unique solution. We construct the appropriate finite dimensional spaces of powers in tension, consider the numerical difficulties in this construction, and then proceed to an analysis of the global convergence properties of the collocation solution. The existing theory for $\varepsilon = 1$ is extended to the singularly perturbed case, and the numerical examples support the theoretical results.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
0037114

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Vilmoš Horvat (autor)

Avatar Url Mladen Rogina (autor)


Citiraj ovu publikaciju:

Horvat, Vilmoš; Rogina, Mladen
Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations // Journal of Computational and Applied Mathematics, 3 (2002), 1-22 (međunarodna recenzija, članak, znanstveni)
Horvat, V. & Rogina, M. (2002) Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations. Journal of Computational and Applied Mathematics, 3, 1-22.
@article{article, author = {Horvat, Vilmo\v{s} and Rogina, Mladen}, year = {2002}, pages = {1-22}, keywords = {Singularly perturbed Volterra integro-differential equations, Volterra integral equations, Tension spline, Collocation method}, journal = {Journal of Computational and Applied Mathematics}, volume = {3}, issn = {0377-0427}, title = {Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations}, keyword = {Singularly perturbed Volterra integro-differential equations, Volterra integral equations, Tension spline, Collocation method} }
@article{article, author = {Horvat, Vilmo\v{s} and Rogina, Mladen}, year = {2002}, pages = {1-22}, keywords = {Singularly perturbed Volterra integro-differential equations, Volterra integral equations, Tension spline, Collocation method}, journal = {Journal of Computational and Applied Mathematics}, volume = {3}, issn = {0377-0427}, title = {Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations}, keyword = {Singularly perturbed Volterra integro-differential equations, Volterra integral equations, Tension spline, Collocation method} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Mathematical Reviews





Contrast
Increase Font
Decrease Font
Dyslexic Font