Pregled bibliografske jedinice broj: 727037
On the existence of D(w)-quadruples in rings of integers of some number fields
On the existence of D(w)-quadruples in rings of integers of some number fields // ALANT 3 — Joint Conferences on Algebra, Logic and Number Theory, Będlewo
Będlewo, Poljska, 2014. str. 1-1 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 727037 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the existence of D(w)-quadruples in rings of integers of some number fields
Autori
Franušić, Zrinka
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
ALANT 3 — Joint Conferences on Algebra, Logic and Number Theory, Będlewo
/ - , 2014, 1-1
Skup
ALANT 3 — Joint Conferences on Algebra, Logic and Number Theory 10th Czech, Polish and Slovak Conference on Number Theory 15th Colloquiumfest on Algebra and Logic
Mjesto i datum
Będlewo, Poljska, 08.06.2014. - 13.06.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Diophantine quadruple ; quadratic field ; pure cubic number field
Sažetak
Let R be a commutative ring with unity 1 and w∈R. The set of nonzero and distinct elements {; ; ; ; a_1, a_2, a_3, a_4}; ; ; ; in R such that a_ia_j + w is a perfect square in R for 1 ≤ i < j ≤ 4 is called a Diophantine quadruple with the property D(w) in R or just a D(w)- quadruple.The conjecture says that there exists a D(w)- quadruple if and only if w can be represented as a difference of two squares, up to finitely many exceptions. The aim of this talk is to show that the conjecture is correct for the ring of integers of the pure cubic number field Q((2)^(1/3)) and the imaginary quadratic field Q(√−3). represented as a difference of two squares, up to finitely many exceptions.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Zrinka Franušić
(autor)