Pregled bibliografske jedinice broj: 725271
INVENTORY CLASSIFICATION USING MULTI – CRITERIA ABC ANALYSIS, NEURAL NETWORKS AND CLUSTER ANALYSIS
INVENTORY CLASSIFICATION USING MULTI – CRITERIA ABC ANALYSIS, NEURAL NETWORKS AND CLUSTER ANALYSIS // Technical Gazette - Tehnički vjesnik, 21 (2014), 5; 1109-1115 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 725271 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
INVENTORY CLASSIFICATION USING MULTI – CRITERIA ABC ANALYSIS, NEURAL NETWORKS AND CLUSTER ANALYSIS
Autori
Šarić, Tomislav ; Šimunović, Katica ; Pezer, Danijela ; Šimunović, Goran
Izvornik
Technical Gazette - Tehnički vjesnik (1330-3651) 21
(2014), 5;
1109-1115
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
ABC analysis; AHP methodology; cluster analysis; inventory classification; neural networks
Sažetak
The work presents a research on inventory ABC classification using various multi-criteria methods (AHP method and cluster analysis) and neural networks. For the real inventory sample data and previously conducted traditional ABC analysis the applications of the mentioned methods in inventory classification have also been investigated. The applied methods’ obtained results have been used to evaluate their usage possibilities in real manufacturing environment. The investigations carried out in the present work create real conditions for a better inventory control and implementation of the results in the ERP system inventory module.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Projekti:
152-1521781-2235 - Razvoj ERP sustava za digitalno poduzeće (Šarić, Tomislav, MZOS ) ( CroRIS)
Ustanove:
Strojarski fakultet, Slavonski Brod
Profili:
Katica Šimunović
(autor)
Goran Šimunović
(autor)
Danijela Pezer
(autor)
Tomislav Šarić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- EMBASE (Excerpta Medica)
- INSPEC
- SCOPUS
- COMPENDEX
- Ei-Compendex
- Elsevier Biobase
- Elsevier GeoAbstracts
- PaperChem