Pregled bibliografske jedinice broj: 723607
Automatic Movie Posters Classification into Genres
Automatic Movie Posters Classification into Genres // ICT Innovations 2014: Advances in Intelligent Systems and Computing, vol 311. / Madevska Bogdanova, Ana ; Gjorgjevikj, Dejan (ur.).
Cham: Springer, 2015. str. 319-328 doi:10.1007/978-3-319-09879-1_32 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 723607 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Automatic Movie Posters Classification into Genres
Autori
Ivašić-Kos, Marina ; Pobar, Miran ; Ipšić, Ivo
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
ICT Innovations 2014: Advances in Intelligent Systems and Computing, vol 311.
/ Madevska Bogdanova, Ana ; Gjorgjevikj, Dejan - Cham : Springer, 2015, 319-328
ISBN
978-3-319-09878-4
Skup
ICT Innovations 2014
Mjesto i datum
Ohrid, Sjeverna Makedonija, 09.09.2014. - 12.09.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
multi-label classification ; data transformation method ; movie poster
Sažetak
A person can quickly grasp the movie genre (drama, comedy, cartoons, etc.) from a poster, regardless of short observation time, clutter and variety of details. Bearing this in mind, it can be assumed that simple properties of a movie poster should play a significant role in automated detection of movie genres. Therefore, visual features based on colors and structural cues are extracted from poster images and used for poster classification into genres. A single movie may belong to more than one genre (class), so the poster classification is a multi-label classification task. To solve the multi-label problem, three different types of classification methods were applied and described in this paper. These are: ML-kNN, RAKEL and Naïve Bayes. ML-kNN and RAKEL methods are directly used on multi-label data. For the Naïve Bayes the task is transformed into multiple single-label classifications. Obtained results are evaluated and compared on a poster dataset using different feature subsets. The dataset contains 6000 posters advertising films classified into 18 genres. The paper gives insights into the properties of the discussed multi-label clas-sification methods and their ability to determine movie genres from posters using low-level visual features.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
MZOS-318-0361935-0852 - Govorne tehnologije (Ipšić, Ivo, MZOS ) ( CroRIS)
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus