Pregled bibliografske jedinice broj: 723472
Injectivity of the specialization homomorphism of elliptic curves
Injectivity of the specialization homomorphism of elliptic curves // Journal of number theory, 148 (2015), 137-152 doi:10.1016/j.jnt.2014.09.023 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 723472 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Injectivity of the specialization homomorphism of elliptic curves
Autori
Gusić, Ivica ; Tadić, Petra
Izvornik
Journal of number theory (0022-314X) 148
(2015);
137-152
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
elliptic curve; specialization homomorphism; number field; class number; quadratic field; cubic field; rank; Pari; Magma
Sažetak
Let E:y^2=x^3+Ax^2+Bx+C be a nonconstant elliptic curve over ℚ(t) with at least one nontrivial ℚ(t)-rational 2-torsion point. We describe a method for finding t0∈ℚ for which the corresponding specialization homomorphism t↦t0∈ℚ is injective. The method can be directly extended to elliptic curves over K(t) for a number field K of class number 1, and in principal for arbitrary number field K. One can use this method to calculate the rank of elliptic curves over ℚ(t) of the form as above, and to prove that given points are free generators. In this paper we illustrate it on some elliptic curves over ℚ(t) from an article by Mestre.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-6422 - Diofantove m-torke, eliptičke krivulje, Thueove i indeksne jednadžbe (DIOPHANTINE) (Dujella, Andrej, HRZZ - 2013-11) ( CroRIS)
037-0372781-2821 - Diofantske jednadžbe i eliptičke krivulje (Dujella, Andrej, MZOS ) ( CroRIS)
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb,
Sveučilište Jurja Dobrile u Puli
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts