Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 72225

A method of service optimization by self-trained path selection


Jevtić, Dragan; Čunko, Krešimir
A method of service optimization by self-trained path selection // Proc. of Limitations and Future Trends in Neural Computation / Maggini, Marco (ur.).
Siena: NATO ARW, 2001. str. 145-150 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 72225 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A method of service optimization by self-trained path selection

Autori
Jevtić, Dragan ; Čunko, Krešimir

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proc. of Limitations and Future Trends in Neural Computation / Maggini, Marco - Siena : NATO ARW, 2001, 145-150

Skup
Limitations and Future Trends in Neural Computation

Mjesto i datum
Italija, 22.10.2001. - 24.10.2001

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
reinforcement learning; self-adaptivity; routing

Sažetak
This paper presents an application of reinforcement Q-learning in solving the problem of automatic routing. A potential redundancy has been detected in a telecommunication network comprising multiple nodes, specialized for routing the jobs between the clients and service providers. The main idea presented here is a permanent trans-fer adaptation for the jobs that have to be sent from a client to service providers, throughout network nodes dedicated for routing. The search for optimal path, i. e. self-adaptation is based on continuous monitoring of available channel capacity between the client and network. The actions that follow monitoring are focused on the selection of optimal throughput via the node that enables maximal exploitation the channel capacity. In some situations information flow between the client and service provider can be significantly reduced as a consequence of traffic load and the choice of throughput. From the client view point accumulation and exploration of knowledge about throughput properties in the network can optimally utilize redundant capacities. Given outcomes are the results of computer simulations.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
036030

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Dragan Jevtić (autor)


Citiraj ovu publikaciju:

Jevtić, Dragan; Čunko, Krešimir
A method of service optimization by self-trained path selection // Proc. of Limitations and Future Trends in Neural Computation / Maggini, Marco (ur.).
Siena: NATO ARW, 2001. str. 145-150 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Jevtić, D. & Čunko, K. (2001) A method of service optimization by self-trained path selection. U: Maggini, M. (ur.)Proc. of Limitations and Future Trends in Neural Computation.
@article{article, author = {Jevti\'{c}, Dragan and \v{C}unko, Kre\v{s}imir}, editor = {Maggini, M.}, year = {2001}, pages = {145-150}, keywords = {reinforcement learning, self-adaptivity, routing}, title = {A method of service optimization by self-trained path selection}, keyword = {reinforcement learning, self-adaptivity, routing}, publisher = {NATO ARW}, publisherplace = {Italija} }
@article{article, author = {Jevti\'{c}, Dragan and \v{C}unko, Kre\v{s}imir}, editor = {Maggini, M.}, year = {2001}, pages = {145-150}, keywords = {reinforcement learning, self-adaptivity, routing}, title = {A method of service optimization by self-trained path selection}, keyword = {reinforcement learning, self-adaptivity, routing}, publisher = {NATO ARW}, publisherplace = {Italija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font