Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 722218

Translation principle for Dirac index


Mehdi, Salah; Pandžić, Pavle; Vogan, David
Translation principle for Dirac index // American journal of mathematics, 139 (2017), 6; 1465-1491 doi:10.1353/ajm.2017.0037 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 722218 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Translation principle for Dirac index

Autori
Mehdi, Salah ; Pandžić, Pavle ; Vogan, David

Izvornik
American journal of mathematics (0002-9327) 139 (2017), 6; 1465-1491

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
$(\frg ; K)$-module ; Dirac cohomology ; Dirac index ; coherent family ; coherent continuation representation ; Goldie rank polynomial ; nilpotent orbits ; associated variety ; Springer correspondence

Sažetak
Let $G$ be a finite cover of a closed connected transpose-stable subgroup of $GL(n, \bR)$ with complexified Lie algebra $\frg$. Let $K$ be a maximal compact subgroup of $G$, and assume that $G$ and $K$ have equal rank. We prove a translation principle for the Dirac index of virtual $(\frg, K)$-modules. As a byproduct, to each coherent family of such modules, we attach a polynomial on the dual of the compact Cartan subalgebra of $\frg$. This ``index polynomial'' generates an irreducible representation of the Weyl group contained in the coherent continuation representation. We show that the index polynomial is the exact analogue on the compact Cartan subgroup of King's character polynomial. The character polynomial was defined in \cite{; ; ; ; ; ; K1}; ; ; ; ; ; on the maximally split Cartan subgroup, and it was shown to be equal to the Goldie rank polynomial up to a scalar multiple. In the case of representations of Gelfand-Kirillov dimension at most half the dimension of $G/K$, we also conjecture an explicit relationship between our index polynomial and the multiplicities of the irreducible components occuring in the associated cycle of the corresponding coherent family.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-4176 - Diracovi operatori i teorija reprezentacija (representations) (Pandžić, Pavle, HRZZ - 2013-11) ( CroRIS)
--KK.01.1.1.01.0004 - Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri (QuantiXLie) (Buljan, Hrvoje; Pandžić, Pavle) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Pavle Pandžić (autor)

Poveznice na cjeloviti tekst rada:

doi muse.jhu.edu muse.jhu.edu

Citiraj ovu publikaciju:

Mehdi, Salah; Pandžić, Pavle; Vogan, David
Translation principle for Dirac index // American journal of mathematics, 139 (2017), 6; 1465-1491 doi:10.1353/ajm.2017.0037 (međunarodna recenzija, članak, znanstveni)
Mehdi, S., Pandžić, P. & Vogan, D. (2017) Translation principle for Dirac index. American journal of mathematics, 139 (6), 1465-1491 doi:10.1353/ajm.2017.0037.
@article{article, author = {Mehdi, Salah and Pand\v{z}i\'{c}, Pavle and Vogan, David}, year = {2017}, pages = {1465-1491}, DOI = {10.1353/ajm.2017.0037}, keywords = {$(\frg, K)$-module, Dirac cohomology, Dirac index, coherent family, coherent continuation representation, Goldie rank polynomial, nilpotent orbits, associated variety, Springer correspondence}, journal = {American journal of mathematics}, doi = {10.1353/ajm.2017.0037}, volume = {139}, number = {6}, issn = {0002-9327}, title = {Translation principle for Dirac index}, keyword = {$(\frg, K)$-module, Dirac cohomology, Dirac index, coherent family, coherent continuation representation, Goldie rank polynomial, nilpotent orbits, associated variety, Springer correspondence} }
@article{article, author = {Mehdi, Salah and Pand\v{z}i\'{c}, Pavle and Vogan, David}, year = {2017}, pages = {1465-1491}, DOI = {10.1353/ajm.2017.0037}, keywords = {$(\frg, K)$-module, Dirac cohomology, Dirac index, coherent family, coherent continuation representation, Goldie rank polynomial, nilpotent orbits, associated variety, Springer correspondence}, journal = {American journal of mathematics}, doi = {10.1353/ajm.2017.0037}, volume = {139}, number = {6}, issn = {0002-9327}, title = {Translation principle for Dirac index}, keyword = {$(\frg, K)$-module, Dirac cohomology, Dirac index, coherent family, coherent continuation representation, Goldie rank polynomial, nilpotent orbits, associated variety, Springer correspondence} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font