Pregled bibliografske jedinice broj: 721322
Optimizing ELARS Algorithms Using NVIDIA CUDA Heterogeneous Parallel Programming Platform
Optimizing ELARS Algorithms Using NVIDIA CUDA Heterogeneous Parallel Programming Platform // ICT Innovations 2014, Advances in Intelligent Systems and Computing / Bogdanova, Ana Madevska ; Gjorgjevikj, Dejan (ur.).
Berlin : Heidelberg: Springer, 2015. str. 135-144 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 721322 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Optimizing ELARS Algorithms Using NVIDIA CUDA Heterogeneous Parallel Programming Platform
Autori
Miletić, Vedran ; Holenko Dlab, Martina ; Hoić- Božić, Nataša ;
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
ICT Innovations 2014, Advances in Intelligent Systems and Computing
/ Bogdanova, Ana Madevska ; Gjorgjevikj, Dejan - Berlin : Heidelberg : Springer, 2015, 135-144
ISBN
978-3-319-09878-4
Skup
ICT Innovations 2014
Mjesto i datum
Ohrid, Sjeverna Makedonija, 09.09.2014. - 12.09.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
e-learning; recommender system; ELARS; algorithm optimization; heterogeneous paralell programming; NVIDIA CUDA
Sažetak
Scalability is an important property of every large-scale recommender system. In order to ensure smooth user experience, recommendation algorithms should be optimized to work with large amounts of user data. This paper presents the optimization approach used in the development of the E-learning activities recommender system (ELARS). The recommendations for students and groups in ELARS include four different types of items: Web 2.0 tools, collaborators (colleague students), optional e- learning activities, and advice. Since implemented recommendation algorithms depend on prediction of students’ preferences, algorithm that computes predictions was offloaded to graphics processing unit using NVIDIA CUDA heterogeneous parallel programming platform. This offload increases performance significantly, especially with large number of students using the system.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka