Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 717577

Bayesian Sensor Fusion Methods for Dynamic Object Tracking - A Comparative Study


Marković, Ivan; Petrović, Ivan
Bayesian Sensor Fusion Methods for Dynamic Object Tracking - A Comparative Study // Automatika – Journal for Control, Measurement, Electronics, Computing and Communications, 55 (2014), 4; 386-398 doi:10.7305/automatika.2014.09.847 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 717577 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Bayesian Sensor Fusion Methods for Dynamic Object Tracking - A Comparative Study

Autori
Marković, Ivan ; Petrović, Ivan

Izvornik
Automatika – Journal for Control, Measurement, Electronics, Computing and Communications (0005-1144) 55 (2014), 4; 386-398

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Bayesian sensor fusion; Information filter; Particle filter; Rényi entropy

Sažetak
In this paper we study the problem of Bayesian sensor fusion for dynamic object tracking. The prospects of utilizing measurements from several sensors to infer about a system state are manyfold and they range from increased estimate accuracy to more reliable and robust estimates. Sensor measurements may be combined, or fused, at a variety of levels ; from the raw data level to a state vector level, or at the decision level. In this paper we mainly focus on the Bayesian fusion at the likelihood and state vector level. We analyze two groups of data fusion methods: centralized independent likelihood fusion, where the sensors report only its measurement to the fusion center, and hierarchical fusion, where each sensor runs its own local estimate which is then communicated to the fusion center along with the corresponding uncertainty. We compare the prospects of utilizing both approaches, and present explicit solutions in the forms of extended information filter, unscented information filter, and particle filter. Furthermore, we also propose a solution for fusion of arbitrary filters and test it on a hierarchical fusion example of two of the aforementioned filters. Hence, the main contributions of this paper are systematic comparative study of Bayesian fusion methods, and a method for hierarchical fusion of arbitrary filters. The fusion methods are tested on a synthetic data generated by multiple Monte Carlo runs for tracking of a dynamic object with several sensors of different accuracies by analyzing the quadratic Rényi entropy and root-mean-square error.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
036-0363078-3018 - Upravljanje mobilnim robotima i vozilima u nepoznatim i dinamičkim okruženjima (Petrović, Ivan, MZO ) ( CroRIS)
ACROSS

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivan Petrović (autor)

Avatar Url Ivan Marković (autor)

Citiraj ovu publikaciju:

Marković, Ivan; Petrović, Ivan
Bayesian Sensor Fusion Methods for Dynamic Object Tracking - A Comparative Study // Automatika – Journal for Control, Measurement, Electronics, Computing and Communications, 55 (2014), 4; 386-398 doi:10.7305/automatika.2014.09.847 (međunarodna recenzija, članak, znanstveni)
Marković, I. & Petrović, I. (2014) Bayesian Sensor Fusion Methods for Dynamic Object Tracking - A Comparative Study. Automatika – Journal for Control, Measurement, Electronics, Computing and Communications, 55 (4), 386-398 doi:10.7305/automatika.2014.09.847.
@article{article, author = {Markovi\'{c}, Ivan and Petrovi\'{c}, Ivan}, year = {2014}, pages = {386-398}, DOI = {10.7305/automatika.2014.09.847}, keywords = {Bayesian sensor fusion, Information filter, Particle filter, R\'{e}nyi entropy}, journal = {Automatika – Journal for Control, Measurement, Electronics, Computing and Communications}, doi = {10.7305/automatika.2014.09.847}, volume = {55}, number = {4}, issn = {0005-1144}, title = {Bayesian Sensor Fusion Methods for Dynamic Object Tracking - A Comparative Study}, keyword = {Bayesian sensor fusion, Information filter, Particle filter, R\'{e}nyi entropy} }
@article{article, author = {Markovi\'{c}, Ivan and Petrovi\'{c}, Ivan}, year = {2014}, pages = {386-398}, DOI = {10.7305/automatika.2014.09.847}, keywords = {Bayesian sensor fusion, Information filter, Particle filter, R\'{e}nyi entropy}, journal = {Automatika – Journal for Control, Measurement, Electronics, Computing and Communications}, doi = {10.7305/automatika.2014.09.847}, volume = {55}, number = {4}, issn = {0005-1144}, title = {Bayesian Sensor Fusion Methods for Dynamic Object Tracking - A Comparative Study}, keyword = {Bayesian sensor fusion, Information filter, Particle filter, R\'{e}nyi entropy} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • SCOPUS


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font